Структуры для фотокатализа на основе ZnO с наночастицами Ag
Аннотация
Цель статьи: Наночастицы серебра являются перспективным компонентом для улучшения каталитических характеристик полупроводниковых материалов за счет эффекта плазмоники. Целью данной работы установление закономерностей влияния осажденного серебра на каталитическую активность оксида цинка.
Экспериментальная часть: Проведен синтез образцов с различным содержанием серебра от 0.2 до 2 мас. %. Для характеризации поверхности образцов были получены СЭМ снимки и АСМ сканы порошков. Для анализа состава были получены EDX спектры и элементное картирование. В результате было подтверждено равномерное осаждение серебра на поверхности оксида цинка и соответствие расчетного состава с полученным. Активность катализатора оценивали по степени деградации органического красителя Родамина 6G.
Выводы: Проанализирован эффект осажденного серебра на поверхность ZnO. При осаждении 0.2 мас. % серебра активность возрастает на 58 %, а при добавлении 2 мас. % приводит к росту активности на 92 %. Согласно полученным данным, было установлено положительное влияние осажденного серебра на фотокаталитическую активность оксида цинка. Зависимость изменения активности от количества серебра выходит на насыщение при достижении 2 мас. % серебра.
Скачивания
Литература
Tao Y., Ma Z., Wang W. Nickel phosphide clusters sensitized TiO2 nanotube arrays as highly efficient photoanode for photoelectrocatalytic urea oxidation. Advanced Functional Materials. 2023;33(9): 2211169. https://doi.org/10.1002/adfm.202211169
Li S., Shang H., Tao Y., … Li H. Hydroxyl radicalmediated efficient photoelectrocatalytic NO oxidation with simultaneous nitrate storage using a flow photoanode reactor. Angewandte Chemie. 2023;62: e202305538. https://doi.org/10.1002/ange.202305538
Wadsworth A., Hamid Z., Kosco J., Gasparini N., McCulloch I. The bulk heterojunction in organic photovoltaic, photodetector, and photocatalytic applications. Advanced Materials. 2020;32(38): e2001763. https://doi.org/10.1002/adma.202001763
Kumari P., Bahadur N., Kong L., O’Dell L. A., Merenda A., Dumee L. Engineering Schottky-like and heterojunction materials for enhanced photocatalysis performance – a review. Materials Advances. 2022: 2309–2323. https://doi.org/10.1039/D1MA01062J
Sun M., Li F., Zhao F., … Li D. Ionic liquid-assisted fabrication of metal–organic framework-derived indium oxide/bismuth oxyiodide p-n junction photocatalysts for robust photocatalysis against phenolic pollutants. Journal of Colloid and Interface Science. 2022;606: 1261–1273. https://doi.org/10.1016/j.jcis.2021.08.132
Zhou Y., Zhang C., Huang D., … Qin D. Structure defined 2D Mo2C/2Dg-C3N4 Van der Waals heterojunction: oriented charge flow in-plane and separation within the interface to collectively promote photocatalytic degradation of pharmaceutical and personal care products. Applied Catalysis B: Environmental. 2022;301: 120749. https://doi.org/10.1016/j.apcatb.2021.120749
Bao S., Wang Z., Zhang J., Tian B. Facet-heterojunctionbased Z-Scheme BiVO4010 microplates decorated with AgBr-Ag nanoparticles for the photocatalytic inactivation of bacteria and the decomposition of organic contaminants. ACS Applied Nano Materials. 2020;3: 8604–8617. https://doi.org/10.1021/acsanm.0c00703
Kannan K., Radhika D., Sadasivuni K. K., Reddy K. R., Raghu A. V. Nanostructured metal oxides and its hybrids for biomedical applications. Advances in Colloid and Interface Science. 2019: 102178. https://doi.org/10.1016/j.cis.2020.102178
Wang J., Liu J., Du Z., Li Z. Recent advances in metal halide perovskite photocatalysts: properties, synthesis and applications. Journal of Energy Chemistry. 2021;54: 770–785. https://doi.org/10.1016/j.jechem.2020.06.024
Wlazlak E., Blachecki A., Bisztyga-Szklarz M., … Zawal P. Heavy pnictogen chalcohalides: the synthesis, structure and properties of these rediscovered semiconductors. Chemical Communications. 2018;54: 12133–12162. https://doi.org/10.1039/C8CC05149F
Du C., Zhang Z., Yu G., … Wang S. A review of metal organic framework (MOFs)-based materials for antibiotics removal via adsorption and photocatalysis. Chemosphere. 2021; 272: 129501. https://doi.org/10.1016/j.chemosphere.2020.129501
He Z., Goulas J., Parker E., Sun Y., Zhou X., Fei L. Review on covalent organic frameworks and derivatives for electrochemical and photocatalytic CO2 reduction. Catalysis Today. 2023;409: 103–118. https://doi.org/10.1016/j.cattod.2022.04.021
Solangi N. H., Karri R. R., Mazari S. A., … Azad A. K. MXene as emerging material for photocatalytic degradation of environmental pollutants. Coordination Chemistry Reviews. 2023;477: 214965. https://doi.org/10.1016/j.ccr.2022.214965
Kozodaev D. A., Muratova E. N., Moshnikov V. A. From nanotechnology to nanoarchitectonics. Scientific and technical conference of the St. Petersburg Scientific and Technical Association of the Russian Electronic Networks named after A. S. Popov, dedicated to the Day of Radio*. 2024;1(79): 356–358. (In Russ.)
Bobkov A. A., Radaykin D. G., Moshnikov V. A. Nanoarchitectonics of porous hierarchical structures for photocatalysis and sensorics. In the collection: Chemical thermodynamics and kinetics. Collection of scientific apers of the XII International Scientific Conference. Veliky Novgorod*. 2022. p. 69–70. (In Russ.)
Nanoparticles, nanosystems and their application. Catalytic nanosystems*. V. A. Moshnikov. A. I. Maksimov (eds.). St. Petersburg: ETU “LETI” Publ.; 2022. 220 p.
Maraeva E., Radaykin D., Bobkov A., … Moshnikov V. Sorption analysis of composites based on zinc oxide for catalysis and medical materials science. Chimica Techno Acta. 2022; 9(4): 20229422. https://doi.org/10.15826/chimtech.2022.9.4.22
Bobkov A. A., Lashkova N. A., Maximov A. I. Fabrication of oxide heterostructures for promising solar cells of a new generation. Semiconductors. 2017;51(1): 61–65. https://doi.org/10.1134/S1063782617010031
Moshchnikov V. A., Tairov Yu. M., Khamova T. V., Shilova O. A. Sol-gel technology of micro- and anocomposites*. St. Petersburg: “Lan” Publ.; 2013. 304 p. (In Russ.)
Shomakhov Z. V., Nalimova S. S., Guketlov A. M., Kondratyev V. M., Moshnikov V. A. Control of the properties of
adsorption sites in the formation of gas-sensitive structures of mixed oxides. Izvestiya vysshikh uchebnykh zavedenii. Elektronika. 2024;29(1): 7–18. (In Russ., abstract in Eng.). https://doi.org/10.24151/1561-5405-2024-29-1-7-18
Pronin I. A., Plugin I. A., Kolosov D. A. … Sysoev V. V. Sol-gel derived ZnO film as a gas sensor: Influence of UV processing versus a thermal annealing. Sensors and Actuators A: Physical. 2024; 377: 115707. https://doi.org/10.1016/j.sna.2024.115707
Kareem M. A., Bello I. T., Shittu H. A. Green synthesis of silver nanoparticles (AgNPs) for optical and photocatalytic applications: a review. OP Conference Series: Materials Science and Engineering. 2020;805(1): 012020. https://doi.org/10.1088/1757-899X/805/1/012020
Zhu H., Chen X., Zheng Z. Mechanism of supported gold nanoparticles as photocatalysts under ultraviolet and visible light irradiation. Chemical Communications. 2009;48: 7524–7526. https://doi.org/10.1039/B917052A
Radaykin D. G., Bobkov A. A. Influence of the plasmonic effect of silver nanoparticles on the catalytic activity of zinc oxide. IV All-Union Congress on Sensorics and Economics “”SENSOR MERGER-2023”*. 2023. p. 153-157. (In Russ.)
Permyakov N. V., Maraeva E. V., Bobkov A. A., Radaykin D. G., Moshnikov V. A. Study of ZnO-based materials for catalysis and medical materials science. Nanophysics and nanomaterials, Collection of scientific papers of the International Symposium dedicated to the 110th anniversary of V. B. Aleskovsky and the 115th anniversary of L. A. Sen, St. Petersburg. 2022.* (In Russ.). Available at: https://elibrary.ru/item.asp?id=50737548
Subramanian V. Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. Journal of the American Chemical Society. 2004;126: 4943–4950. https://doi.org/10.1021/ja0315199
Kareem M. A., Bello I. T., Shittu H. A., Sivaprakash P., Adedokun O., Arumugam S. Synthesis, characterization, and photocatalytic application of silver doped zinc oxide nanoparticles. Cleaner Materials. 2022;3(1): 100041. https://doi.org/10.1016/j.clema.2022.100041
Vaianoa V., Matarangoloa M., Murciab J. J., Rojasb H., Navíoc J.A., Hidalgoc M. C. Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag. Applied Catalysis B Environmental. 2018;225: 197–206. https://doi.org/10.1016/j.apcatb.2017.11.075
Copyright (c) 2025 Конденсированные среды и межфазные границы

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.





