Effect of the re-emitting layer of organic thin film on the efficiency of silicon solar cells
Abstract
Purpose: Photovoltaic solar energy conversion technologies represent promising pathways to clean and renewable energy production. Research on organic solar cells is actively developing, especially in the last decade it has attracted scientific and economic interest driven by the rapid increase in energy conversion efficiency. In recent years, luminescent materials capable of converting a broad spectrum of light into photons of a specific wavelength have been synthesized and used to minimize losses in the solar cell-based energy conversion process. This paper presents a study of the optical and luminescent properties of thin films of copper complexes C62H50Cu2I2N8P2.
Experimental: It is proposed to use this material as a re-emitting layer on the surface of a solar cell in order to increase the coefficient of performance (COP) of the latter by converting energy from the ultraviolet range to the visible range. A study of the volt-ampere characteristics of a pure single-crystal solar cell and a cell with an re-emitting copper complex layerhas been carried out.
Conclusions: It is shown that deposition of C62H50Cu2I2N8P2 on the surface of solar cells allows increasing the efficiency of converters by 1.45 % in the ultraviolet range at low economic costs. Mechanisms for enhancing energy conversion are discussed and recent experimental results on similar studies are analyzed
Downloads
References
Hoppe H., Saricifti N. S. Organic solar cells: an overview. Journal of Materials Research. 2004:19(7): 1924–1945. https://doi.org/10.1557/jmr.2004.0252
Roy S. S., Patra S. K. Synthesis and characterization of diferrocenyl conjugates: varying π-conjugated bridging ligands and its consequence on electrochemical communication. European Journal of Inorganic Chemistry. 2019: 16): 2193–2201. https://doi.org/10.1002/ejic.201900114
Servaites J. D., Ratner M. A., Marks T. J. Organic solar cells: a new look at traditional models. Energy & nvironmental Science. 2011:4(11): 4410–4422. https://doi.org/10.1039/c1ee01663f
Yella A., Lee H.-W., Tsao H. N., Yi C., … Gratzel M. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science. 2011:334(6056): 629–634. https://doi.org/10.1126/science.1209688
Kelzenberg M. D., Boettcher S. W., Petykiewicz J. A., … Atwater H. A. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nature Materials. 2010:9(3): 239–244. https://doi.org/10.1038/nmat2635
Huang K.-Y., Luo Y.-H., Cheng H.-M., Tang J., Huang J.‑H. Performance enhancement of CdS/CdSe quantum dot-sensitized solar cells with (001)-oriented anatase TiO2 nanosheets photoanode. Nanoscale Research Letters. 2019:14(1): 18. https://doi.org/10.1186/s11671-018-2842-5
Peng K.-Q., Lee S.-T. Silicon nanowires for photovoltaic solar energy conversion. Advanced Materials. 2011:23(2): 198–215. https://doi.org/10.1002/adma.201002410
Hochbaum A. I., Yang P. Semiconductor nanowires for energy conversion. Chemical Reviews. 2010:110(1): 527–546. https://doi.org/10.1021/cr900075v
Wengeler L., Schmitt M., Peters K., Scharfer P., Schabel W. Comparison of large scale coating techniques for organic and hybrid films in polymer based solar cells. Chemical Engineering and Processing: Process Intensification. 2013:68: 38–44. https://doi.org/10.1016/j.cep.2012.03.004
Currie M. J., Mapel J. K., Heidel T. D., Goffri S., Baldo M. A. High-efficiency organic solar concentrators for photovoltaics. Science. 2008:321(5886): 226–228. https://doi.org/10.1126/science.1158342
Weber W. H., Lambe J. Luminescent greenhouse collector for solar radiation. Applied Optics. 1976:15(10): 2299–2300. https://doi.org/10.1364/ao.15.002299
Barnham K., Marques J. L., Hassard J., O’Brien P. Quantum-dot concentrator and thermodynamic model for the global redshift. Applied Physics Letters. 2000:76(9): 1197–1199. https://doi.org/10.1063/1.125981
Batchelder J. S., Zewail A. H., Cole T. Luminescent solar concentrators 2: experimental and theoretical analysis of their possible efficiencies. Applied Optics. 1981:20(21): 3733–3754. https://doi.org/10.1364/ao.20.003733
Smestad G., Ries H., Winston R., Yablonovitch E. The thermodynamic limits of light concentrators. Solar energy Materials. 1990: 21(2-3): 99–111. https://doi.org/10.1016/0165-1633(90)90047-5
Huang X., Han S., Huang W., Liu X. Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chemical Society Reviews. 2013:42(1): 173–201. https://doi.org/10.1039/c2cs35288e
Strümpel C., McCann M., Beaucarne G., … Tobias I. Modifying the solar spectrum to enhance silicon solar cell efficiency – an overview of available materials. Solar Energy Materials and Solar Cells. 2007:91(4): 238–249. https://doi.org/10.1016/j.solmat.2006.09.003
Richards B. S. Luminescent layers for enhanced silicon solar cell performance: Down-conversion. Solar Energy Materials and Solar Cells. 2006:90(9): 1189–1207. https://doi.org/10.1016/j.solmat.2005.07.001
Shalav A., Richards B. S., Green M. A. Luminescent layers for enhanced silicon solar cell performance: up-conversion. Solar Energy Materials and Solar Cells. 2007:91(9): 829–842. https://doi.org/10.1016/j.solmat.2007.02.007
Eliseeva S. V., Bünzli J.-C. G. Lanthanide luminescence for functional materials and bio-sciences. Chemical Society Reviews. 2010:39(1): 189–227. https://doi.org/10.1039/b905604c
Huang C.-S., Jakubowski K., Ulrich S., … Boesel L. F. Nano-domains assisted energy transfer in amphiphilic polymer conetworks for wearable luminescent solar concentrators. Nano Energy. 2020:76: 105039. https://doi.org/10.1016/j.nanoen.2020.105039
Van der Ende B. M., Aarts L., Meijerink A. Lanthanide ions as spectral converters for solar cells. Physical chemistry Chemical Physics. 2009:11(47): 11081. https://doi.org/10.1039/b913877c
Gusev A., Kiskin M., Braga E., … Linert W. Structure and emission properties of dinuclear copper(I) complexes with pyridyltriazole. RSC Advances. 2023:13(6): 3899–3909. https://doi.org/10.1039/d2ra06986e
Tyutyunik A. S., Gurchenko V. S., Mazinov A. S. Study of the electrochemical and electrical properties of Zn(II) pyrazolone-based azomethine complexes and their temperature dependences. Inorganic Materials: Applied Research. 2022:13(5): 1216–1222. https://doi.org/10.1134/S2075113322050434
Ejdelman B. L., Ejdelman K. B., Gudkov D. V., Polisan A. A. Semiconductor photovoltaic converter. Patent RF, no. 2750366. Publ. 28.06.2021, bull. no. 19.
Copyright (c) 2025 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases

This work is licensed under a Creative Commons Attribution 4.0 International License.