Effect of the re-emitting layer of organic thin film on the efficiency of silicon solar cells

  • Andrey S. Tyutyunik V. I. Vernadsky Crimean Federal University, 4 prospekt Vernadskogo, Simferopol 295007, Russian Federation https://orcid.org/0000-0001-9017-9996
  • Vladimir S. Gurchenko V. I. Vernadsky Crimean Federal University, 4 prospekt Vernadskogo, Simferopol 295007, Russian Federation https://orcid.org/0000-0002-8270-3820
  • Alim S. Mazinov V. I. Vernadsky Crimean Federal University, 4 prospekt Vernadskogo, Simferopol 295007, Russian Federation
Keywords: Solar cell, Photovoltaic converters, Optical spectrum, Luminescence, Thin films, Copper complexes

Abstract

Purpose: Photovoltaic solar energy conversion technologies represent promising pathways to clean and renewable energy production. Research on organic solar cells is actively developing, especially in the last decade it has attracted scientific and economic interest driven by the rapid increase in energy conversion efficiency. In recent years, luminescent materials capable of converting a broad spectrum of light into photons of a specific wavelength have been synthesized and used to minimize losses in the solar cell-based energy conversion process. This paper presents a study of the optical and luminescent properties of thin films of copper complexes C62H50Cu2I2N8P2.

Experimental: It is proposed to use this material as a re-emitting layer on the surface of a solar cell in order to increase the coefficient of performance (COP) of the latter by converting energy from the ultraviolet range to the visible range. A study of the volt-ampere characteristics of a pure single-crystal solar cell and a cell with an re-emitting copper complex layerhas been carried out.

Conclusions: It is shown that deposition of C62H50Cu2I2N8P2 on the surface of solar cells allows increasing the efficiency of converters by 1.45 % in the ultraviolet range at low economic costs. Mechanisms for enhancing energy conversion are discussed and recent experimental results on similar studies are analyzed

Downloads

Download data is not yet available.

Author Biographies

Andrey S. Tyutyunik, V. I. Vernadsky Crimean Federal University, 4 prospekt Vernadskogo, Simferopol 295007, Russian Federation

Cand. Sci. (Phys.–Math.), Research Fellow at the Department of Radiophysics and Electronics,
Physical and Technical Institute, V. I. Vernadsky Crimean Federal University (Simferopol, Russian Federation)

Vladimir S. Gurchenko, V. I. Vernadsky Crimean Federal University, 4 prospekt Vernadskogo, Simferopol 295007, Russian Federation

Research Fellow at the Department of Radiophysics and Electronics, Physical and Technical
Institute, V. I. Vernadsky Crimean Federal University (Simferopol, Russian Federation)

Alim S. Mazinov, V. I. Vernadsky Crimean Federal University, 4 prospekt Vernadskogo, Simferopol 295007, Russian Federation

Dr. Sci. (Phys.–Math.), Assistant Professor, Head of the Department of Radiophysics and Electronics, Physical and technical institute, V. I. Vernadsky Crimean Federal University (Simferopol, Russian Federation)

References

Hoppe H., Saricifti N. S. Organic solar cells: an overview. Journal of Materials Research. 2004:19(7): 1924–1945. https://doi.org/10.1557/jmr.2004.0252

Roy S. S., Patra S. K. Synthesis and characterization of diferrocenyl conjugates: varying π-conjugated bridging ligands and its consequence on electrochemical communication. European Journal of Inorganic Chemistry. 2019: 16): 2193–2201. https://doi.org/10.1002/ejic.201900114

Servaites J. D., Ratner M. A., Marks T. J. Organic solar cells: a new look at traditional models. Energy & nvironmental Science. 2011:4(11): 4410–4422. https://doi.org/10.1039/c1ee01663f

Yella A., Lee H.-W., Tsao H. N., Yi C., … Gratzel M. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science. 2011:334(6056): 629–634. https://doi.org/10.1126/science.1209688

Kelzenberg M. D., Boettcher S. W., Petykiewicz J. A., … Atwater H. A. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nature Materials. 2010:9(3): 239–244. https://doi.org/10.1038/nmat2635

Huang K.-Y., Luo Y.-H., Cheng H.-M., Tang J., Huang J.‑H. Performance enhancement of CdS/CdSe quantum dot-sensitized solar cells with (001)-oriented anatase TiO2 nanosheets photoanode. Nanoscale Research Letters. 2019:14(1): 18. https://doi.org/10.1186/s11671-018-2842-5

Peng K.-Q., Lee S.-T. Silicon nanowires for photovoltaic solar energy conversion. Advanced Materials. 2011:23(2): 198–215. https://doi.org/10.1002/adma.201002410

Hochbaum A. I., Yang P. Semiconductor nanowires for energy conversion. Chemical Reviews. 2010:110(1): 527–546. https://doi.org/10.1021/cr900075v

Wengeler L., Schmitt M., Peters K., Scharfer P., Schabel W. Comparison of large scale coating techniques for organic and hybrid films in polymer based solar cells. Chemical Engineering and Processing: Process Intensification. 2013:68: 38–44. https://doi.org/10.1016/j.cep.2012.03.004

Currie M. J., Mapel J. K., Heidel T. D., Goffri S., Baldo M. A. High-efficiency organic solar concentrators for photovoltaics. Science. 2008:321(5886): 226–228. https://doi.org/10.1126/science.1158342

Weber W. H., Lambe J. Luminescent greenhouse collector for solar radiation. Applied Optics. 1976:15(10): 2299–2300. https://doi.org/10.1364/ao.15.002299

Barnham K., Marques J. L., Hassard J., O’Brien P. Quantum-dot concentrator and thermodynamic model for the global redshift. Applied Physics Letters. 2000:76(9): 1197–1199. https://doi.org/10.1063/1.125981

Batchelder J. S., Zewail A. H., Cole T. Luminescent solar concentrators 2: experimental and theoretical analysis of their possible efficiencies. Applied Optics. 1981:20(21): 3733–3754. https://doi.org/10.1364/ao.20.003733

Smestad G., Ries H., Winston R., Yablonovitch E. The thermodynamic limits of light concentrators. Solar energy Materials. 1990: 21(2-3): 99–111. https://doi.org/10.1016/0165-1633(90)90047-5

Huang X., Han S., Huang W., Liu X. Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chemical Society Reviews. 2013:42(1): 173–201. https://doi.org/10.1039/c2cs35288e

Strümpel C., McCann M., Beaucarne G., … Tobias I. Modifying the solar spectrum to enhance silicon solar cell efficiency – an overview of available materials. Solar Energy Materials and Solar Cells. 2007:91(4): 238–249. https://doi.org/10.1016/j.solmat.2006.09.003

Richards B. S. Luminescent layers for enhanced silicon solar cell performance: Down-conversion. Solar Energy Materials and Solar Cells. 2006:90(9): 1189–1207. https://doi.org/10.1016/j.solmat.2005.07.001

Shalav A., Richards B. S., Green M. A. Luminescent layers for enhanced silicon solar cell performance: up-conversion. Solar Energy Materials and Solar Cells. 2007:91(9): 829–842. https://doi.org/10.1016/j.solmat.2007.02.007

Eliseeva S. V., Bünzli J.-C. G. Lanthanide luminescence for functional materials and bio-sciences. Chemical Society Reviews. 2010:39(1): 189–227. https://doi.org/10.1039/b905604c

Huang C.-S., Jakubowski K., Ulrich S., … Boesel L. F. Nano-domains assisted energy transfer in amphiphilic polymer conetworks for wearable luminescent solar concentrators. Nano Energy. 2020:76: 105039. https://doi.org/10.1016/j.nanoen.2020.105039

Van der Ende B. M., Aarts L., Meijerink A. Lanthanide ions as spectral converters for solar cells. Physical chemistry Chemical Physics. 2009:11(47): 11081. https://doi.org/10.1039/b913877c

Gusev A., Kiskin M., Braga E., … Linert W. Structure and emission properties of dinuclear copper(I) complexes with pyridyltriazole. RSC Advances. 2023:13(6): 3899–3909. https://doi.org/10.1039/d2ra06986e

Tyutyunik A. S., Gurchenko V. S., Mazinov A. S. Study of the electrochemical and electrical properties of Zn(II) pyrazolone-based azomethine complexes and their temperature dependences. Inorganic Materials: Applied Research. 2022:13(5): 1216–1222. https://doi.org/10.1134/S2075113322050434

Ejdelman B. L., Ejdelman K. B., Gudkov D. V., Polisan A. A. Semiconductor photovoltaic converter. Patent RF, no. 2750366. Publ. 28.06.2021, bull. no. 19.

Published
2025-04-08
How to Cite
Tyutyunik, A. S., Gurchenko, V. S., & Mazinov, A. S. (2025). Effect of the re-emitting layer of organic thin film on the efficiency of silicon solar cells. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 27(2), 316-322. https://doi.org/10.17308/kcmf.2025.27/12808
Section
Original articles