Analysis of anisotropic heat and thermal diffusivity of thermally expanded graphite
Abstract
Purpose: This paper aims to look into the anisotropic thermal diffusivity of thermally expanded graphite (TEG) foil using flash method. Its structure is compared with graphene oxide (GO) multilayer foil. Morphology, diffractogram and surface profilometry of TEG and GO produced by two different manufacturing processes are demonstrated. TEG was made of intercalated graphite by thermolysis, and GO was made by microwave-assisted graphite oxide peeling (MEGO).
Experimental: The paper studies temperature distribution in the TEG sample as a result of continuous exposure to laser radiation and compares it to those of copper and aluminum samples.
Conclusions: It also provides a perspective on possible application of TEG in heat transfer
Downloads
References
Renteria J. D., Ramirez S., Malekpour H., … Balandin A. A. Anisotropy of thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature. Advanced Functional Materials. 2015;25(2): 4664. https://doi.org/10.1002/adfm.201501429
Shulga Y. M., Baskakov S. A., Baskakova Y. V., … Kovalev I. D. Supercapacitors with graphene oxide separators and reduced graphite oxide electrodes. Journal of Power Sources. 2015;279: 722–730. https://doi.org/10.1016/j.jpowsour.2015.01.032
Tite T., Chiticaru E. A., Burns J. S., Ionita M. Impact of nano-morphology, lattice defects and conductivity on the performance of graphene based electrochemical biosensors. Journal of Nanobiotechnology. 2019;17(101): p. 5. https://doi.org/10.1186/s12951-019-0535-6
Belomestnykh V. N., Tesleva E. P. Poisson’s ratio and Gruneisen parameter of solids. Bulletin of Tomsk olytechnic University. 2003;306(5); 8–12. (In Russ., abstract in Eng.). Available at: https://elibrary.ru/htnczd
Prokhorov D. A., Zuev S. M. Investigation of the characteristics of a graphene-based thermal interface for cooling integrated microcircuits. Protection of Metals and Physical Chemistry of Surfaces. 2023;59(2): 155–162. https://doi.org/10.1134/s2070205123700247
Donghua L., Xiaosong C., Yaping Y., … Dacheng W. Conformal hexagonal-boron nitride dielectric interface for tungsten diselenide devices with improved mobility and thermal dissipation. Nature Communications. 2019;10(1188): 2. https://doi.org/10.1038/s41467-019-09016-0
Sarkarat M., Lanagan M., Ghosh D., Lottes A., Budd K., Rajagopalan R. Improved thermal conductivity and AC dielectric breakdown strength of silicone rubber/BN composites. Composites Part C: Open Access. 2020;2: 100023. https://doi.org/10.1016/j.jcomc.2020.100023
Light-flash-apparatus LFA 467 HyperFlash-Series methods, techniques, applications for temperature and warmth factors. Netzsch. 0823. Available at: https://analyzing-testing.netzsch.com/_Resources/Persistent/3/6/7/f/367f54b9bc7fc3a5b36f6b41191f5dbaf802ecb7/LFA_467_HyperFlash_en_web.pdf
Description of the type of measuring instrument. Thermophysical parameter meters of the LFA 467 HyperFlash modif ication / GCSI SI FSUE “VNIIM named after D. I. Mendeleyev”*. Certificate of approval of the type of measuring instrument No. 57491-14. 2022. (In Russ.)
Technical Specifications DSC 204 F1 Phoenix / Netzsch. 0222. Available at: https://analyzing-testing.netzsch.com/_Resources/Persistent/b/8/6/c/b86c2a6637064b1361d580c2bc05367072b194d6/Key_Technical_Data_en_DSC_204_F1_Phoenix.pdf
Description of the measuring instrument type. Differential scanning calorimeters of the DSC 200 F3, DSC 204 F1, DSC 204 HP, DSC 404 C, DSC 404 F1, DSC 404 F3 modif ications / GCSI SI FSUE “VNIIM named after D. I. Mendeleyev”*. Certificate of approval of the type of measuring instruments No. 54912-13. 2023. (In Russ.)
Zinoviev V. E. Thermophysical properties of metals at high temperatures*. Reference ed., Moscow: Metallurgy Publ.; 1989. p. 384. (In Russ.)
Description of the type of measuring instrument. X-ray diffractometers of the DRON- model 8N and DRON-8T GCSI SI FSUE “VNIM named after D. I. Mendeleev”*. Certificate of approval of the type of measuring instruments No. 82575-21. 2023. (In Russ.)
Fayos J. Possible 3D carbon structures as progressive intermediates in graphite to diamond phase transition. Journal of Solid State Chemistry. 1999;148(2): 278–285. https://doi.org/10.1006/jssc.1999.8448
Siburian R., Sihotang H., Lumban S. R., Supeno M., Simanjuntak C. New route to synthesize graphene nano sheets. Oriental Journal of Chemistry. 2018;34(1): 182–187. https://doi.org/10.13005/ojc/340120
Fentaw T. E., Worku D. A. Controlled synthesis, characterization and reduction of graphene oxide: a convenient method for large scale production. Egyptian Journal of Basic and Applied Sciences. 2017;4(1): 74–79. https://doi.org/10.1016/j.ejbas.2016.11.002
Aftab A., Sadeeq U., Abrar K., … Qipeng Y. Graphene oxide selenium nanorod composite as a stable electrode material for energy storage devices. Applied Nanoscience. 2020;10: 1243–1255. https://doi.org/10.1007/s13204-019-01204-0
Copyright (c) 2025 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases

This work is licensed under a Creative Commons Attribution 4.0 International License.