Synthesis of Upconversion Luminophores Based on Calcium Fluoride

  • Alexander A. Alexandrov MIREA - Russian Technological University, 86 Prospekt Vernadskogo, Moscow 119571, Russian Federation, Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Moscow 119991, Russian Federation https://orcid.org/0000-0001-7874-7284
  • Mariya N. Mayakova Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Moscow 119991, Russian Federation сKurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, https://orcid.org/0000-0003-0713-5357
  • Valery V. Voronov Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Moscow 119991, Russian Federation сKurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences https://orcid.org/0000-0001-5029-8560
  • Daria V. Pominova Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Moscow 119991, Russian Federation Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences https://orcid.org/0000-0002-3634-8709
  • Sergey V. Kuznetsov Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Moscow 119991, Russian Federation Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences https://orcid.org/0000-0002-7669-1106
  • Alexander E. Baranchikov Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky prospekt, Moscow 119991, Russian Federation https://orcid.org/0000-0002-2378-7446
  • Vladimir K. Ivanov Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky prospekt, Moscow 119991, Russian Federation https://orcid.org/0000-0003-2343-2140
  • Elena I. Lysakova aMIREA - Russian Technological University, 86 Prospekt Vernadskogo, Moscow 119571, Russian Federation https://orcid.org/0000-0001-6298-5712
  • Pavel P. Fedorov Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Moscow 119991, Russian Federation сKurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, https://orcid.org/0000-0003-0713-5357
Keywords: luminophores, molten salt synthesis, inorganic fl uorides, upconversion, nanopowders, rare-earth elements.

Abstract

The aim of our study was to synthesize a luminophore based on calcium fl uoride doped with rare-earth elements: 5 % Yb and 1 % Er, using the molten salt synthesis method.
NaNO3 was used as a solvent and sodium fluoride NaF served as the fluorinating agent. The obtained samples were analysed and described using X-ray powder diffraction analysis, energy dispersive X-ray spectroscopy, scanning electron microscopy, and luminescence spectroscopy.
During the study we also investigated the effect of the synthesis conditions on the phase composition and the particles morphology. It was determined that single-phase samples (solid solutions based on calcium fl uoride) can only be obtained at a temperature of at least 400 °C, with the optimal exposure time being 3 hours. The composition of the obtained samples was determined. It differs from the nominal composition and can be described as Ca0.88(Yb, Er)0.06Na0.06F2. It was demonstrated that the parallel insertion of sodium and rare-earth element ions increases the solubility limit of sodium fl uoride in calcium
fl uoride. The luminescence effi ciency was 1.21 %.
As a result of this study we obtained a new material with upconversion properties.

 

 

 

REFERENCES

  1. Ovsjankin V. V., Feofi lov P. P. O mehanizme summirovanija jelektronnyh vozbuzhdenij vaktivirovannyh kristallah [On the mechanism of combination of electron excitations in activated crystals]. Pis’ma v ZhJeTF = JETP Letters. 1966;3(12):494–497.
  2. Auzel F. Compteur quantique par transfert d’energie entre deux ions de terres rares dans un tungstate mixte et dans un verre. C. R. Acad. Sci. B. 1966;262: 1016–1019.
  3. Fedorov P. P., Kuznetsov S. V., Osiko V. V. Elaboration of nanofl uorides and ceramics for optical and laser applications. In: Tressaud A., Poeppelmeier K.(eds.) Photonic and electronic properties of fl uoride materials: Progress in fl uorine science series. Amsterdam:Elsevier; 2016. p. 7–31. DOI: http://doi.org/10.1016/B978-0-12-801639-8.00002-7
  4. Kostiv U., Rajsiglova L., Luptakova D., Pluhacek T., Vannucci L., Havlicek V., Engstova H., Jirak D., Slouf M., Makovicky P., Sedlacek R., Horak D. Biodistribution of upconversion/magnetic silica-coated NaGdF4:Yb3+/Er3+nanoparticles in mouse models. RSC Adv. 2017;7: 45997–46006. DOI: https://doi.org/10.1039/c7ra08712h
  5. Zhao J., Zhu Y.-J., Chen F. Microwave-assisted solvothermal synthesis and upconversion luminescence of CaF2:Yb3+/Er3+ nanocrystals. J. Colloid Interface Sci.2015;440: 39–45. DOI: http://doi.org/10.1016/j.jcis.2014.10.031
  6. Rakov N., Maciel G.S., Xiao M. Upconversion fl uorescence and its thermometric sensitivity of Er3+: Yb3+ co-doped SrF2 powders prepared by combustion synthesis. Electron. Mater. Lett. 2014;10(5): 985–989. DOI: https://doi.org/10.1007/s13391-014-4030-9
  7. Zhiping Z., Yingsen Y., Quamin S., Xiaotang L., Bingfu L., Yun Y. Preparation and characterization of CaF2:Yb3+, Er3+ up-conversion phosphor. Sci. Adv. Mater.2017;9(3–4): 523–527. DOI: https://doi.org/10.1166/sam.2017.2334
  8. Vakhrenev R. G., Mayakova M. N., Kuznetsov S. V., Ryabova A. V., Pominova D. V., Voronov V. V., Fedorov P. P. The research of synthesis and luminescentcharacteristics of calcium fluoride doped with ytterbium and erbium for biomedical application. Kondensirovannye sredy i mezhfaznye granicy = Condensed Matter and Interphases. 2016;18(4): 487–493. Available at: https://journals.vsu.ru/kcmf/article/view/157 (In Russ., abstract in Eng.)
  9. Yu. S., Zhi Y., Su H. Hydrothermal synthesis and upconversion properties of CaF2:Er3+/Yb3+ nanocrystals. J. Nanosci. Nanotechnol. 2014;14: 3380–3386. DOI:https://doi.org/10.1166/jnn.2014.7991
  10. Ansaru A. A., Yadav R., Rai S. B. Physiochemicalproperties of greatly enhanced photoluminescence of aqueous dispersible upconversion CaF2:Yb/Ernanoparticles. Photochem. Photobiol. Sci. 2017;16: 890–896. DOI: https://doi.org/10.1039/c6pp00448b
  11. Rehmer A., Scheurell K., Kemnitz E., Formation of nanoscopic CaF2 via a fl uorolytic sol–gel process for antireflective coatings. J. Mater. Chem. C. 2015;3:1716–1723. DOI: http://doi.org/10.1039/c4tc02510e
  12. Ritter B., Krahl T., Scholz G., Kemnitz E. Local Structures of Solid Solutions Sr1–xYxF2+x (x = 0...0.5) with fluorite structure prepared by sol−gel and mechanochemical syntheses. J. Phys. Chem. C. 2016;120(16): 8992–8999. DOI: http://doi.org/10.1021/acs.jpcc.6b01834
  13. Fedorov P. P., Mayakova M. N., Аlexandrov А. А., Voronov V. V., Kuznetsov S. V., Baranchikov A. E., Ivanov V. K. The melt of sodium nitrate as a new medium for synthesis of fl uorides. Inorganics. 2018;6: 38. DOI: https://doi.org/10.3390/inorganics6020038
  14. Ha J.-W., Sohn E.-H., Park I. J., Lee S.-B. Preparation of CaF2 microspheres by thermal decomposition of trifl uoroacetate precursor in molten salt medium. Mater. Lett. 2017;209: 357–359. DOI: http://doi.org/10.1016/j.matlet.2017.08.029
  15. Chen C., Sun L.-D., Li Z.-X., Li L.-L., Zhung J., Zhang Y.-W., Yan C.-H. Ionic liquid-based route to spherical NaYF4 nanoclusters with the assistance of microwave radiation and their multicolor upconversion luminescence. Langmuir. 2010;26(11): 8797–8803. DOI: http://doi.org/10.1021/la904545a
  16. Guo H., Guo Y., Noh H. M., Moon B. K., Park S. H., Jeong J. H., Kim K. H. Elaboration, structure and luminescence of sphere-like CaF2:RE submicroparticlesby ionic liquids based hydrothermal process. J. Nanosci. Nanotechnol. 2016;16: 1146–1150. DOI: https://doi.org/10.1166/jnn.2016.10800
  17. Deng X., Dai Y., Liu J., Zhou Y., Ma P., Cheng Z., Chen Y., Deng K., Li X., Hou Z., Li C., Lin J. Multifunctional hollow CaF2:Yb3+/Er3+/Mn2+-poly(2-Aminoethyl methacrylate) microspheres for Pt(IV) pro-drug delivery and tri-modal imaging. Biomaterials.2015;50: 154–163. DOI: https://doi.org/10.1016/j.biomaterials.2015.01.040
  18. Liang L., Liu Y., Bu C., Guo L., Sun W., Nuang N., Peng T., Sebo B., Pan M., Liu W., Guo S., Zhao X.-Z. Highly uniform, bifunctional core/double shell structured b-NaYF4:Er3+, Yb3+ @ SiO2@TiO2 hexagonal sub microprisms for high performance dye sensitized solar cells. Adv. Mater. 2013;25: 2174–2180. DOI: https://doi.org/10.1002/adma.201204847
  19. Balabhadra S., Debasu M. L., Brites C. D. S., Ferreira R. A. S. Upconverting nanoparticles working as primary thermometers in different media. J. Phys. Chem. C. 2017;121: 13962–13968. DOI: https://doi.org/10.1021/acs.jpcc.7b04827
  20. Rozhnova Yu. A., Kuznetsov S. V., Voronov V. V., Fedorov P. P. Synthesis of up-conversion Ho3+ and Er3+ doped strontium fl uoride luminophores for visualiserof two-micron radiation. Kondensirovannye sredy i mezhfaznye granicy = Condensed Matter and Interphases. 2016;18(3): 408–413. Available at: https://journals.vsu.ru/kcmf/article/view/150 (In Russ., abstract in Eng.)
  21. Rozhnova Yu. A., Luginina A. A., Voronov V. V., Ermakov R. P., Kuznetsov S. V., Ryabova A. V., Pominova D. V., Arbenina V. V., Osiko V. V., Fedorov P. P. White light luminophores based on Yb3+/Er3+/Tm3+- coactivated strontium fl uoride powders. Mater. Chem. Phys. 2014; 148: 201–207. DOI: https://doi.org/10.1016/j.matchemphys.2014.07.032
  22. Kuznetsov S., Ermakova Yu., Voronov V., Fedorov P., Busko D., Howard I. A., Richards B. S., Turshatov A. Up-conversion quantum yields of SrF2: Yb3+, Er3+ sub-micron particles prepared by precipitation from aqueous solution. J. Mater. Chem. C. 2018;6: 598–604. DOI: https://doi.org/10.1039/c7tc04913g
  23. Yasyrkina D. S., Kuznetsov S. V., Ryabova A. V., Pominova D. V., Voronov V. V., Ermakov R.P., Fedorov P. P. Dependence of quantum yield of upconversion luminescence on the composition of f luorite-type solid solution NaY1–x–yYbxEryF4. Nanosystems: physics, chemistry, mathematics. 2013;4(5): 648–656. Available at: https://cyberleninka.ru/article/n/dependence-of-quantum-yield-of-upconversion-luminescence-on-the-composition-offluorite-type-solid-solution-nay-1-x-yyb-xer-yf-4
  24. Ryabova A. V., Pominova D. V., Krut’ko V. A., Komova M. G., Loschenov V. B. Spectroscopic research of upconversion nanomaterials based on complex oxide compounds doped with rare-earth ion pairs: Benefit for cancer diagnostics by upconversion fluorescence and radio sensitive methods. Photon Lasers Med. 2013;2: 117–128. DOI: https://doi.org/10.1515/plm-2013-0013
  25. Fedorov P. P., Sobolev B. P. Concentration dependence of unit-cell parameters of phases M1–xRxF2+x with the fluorite structure. Sov. Phys. Crystallogr. 1992;37(5): 1210–1219.
  26. Fedorov P. P., Mayakova M. N., Kuznetsov S. V., Maslov V. A., Pynenkov A. A., Uslamina M. A., Nishchev K. N., Sorokin N. I., Baranchikov A. E., Ivanov V. K. Phase diagram of the NaF–CaF2 system and the electrical conductivity of a CaF2-based solid solution. Rus. J. Inorg. Chem. 2016;61(11): 1529–1536. DOI: https://doi.org/10.1134/S003602361611005X
  27. Sobolev B. P. The rare earth trifl uorides. P. 1. The high-temperature chemistry of the rare earth trifl uorides. Barcelona: Institut d’Estudis Catalans; 2000. 521 p. 28. Fedorov P. P., Rappo A. V. NaF-CaF2-YbF3 phase diagram. Rus. J. Inorg. Chem. 2008;53(7): 1210–1213. DOI: https://doi.org/10.1134/S0036023608070231
  28. Fedorov P. P., Rappo A. V. NaF-CaF2-YbF3 phase diagram. Rus. J. Inorg. Chem. 2008;53(7): 1210–1213. DOI: https://doi.org/10.1134/S0036023608070231

Downloads

Download data is not yet available.

Author Biographies

Alexander A. Alexandrov, MIREA - Russian Technological University, 86 Prospekt Vernadskogo, Moscow 119571, Russian Federation, Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Moscow 119991, Russian Federation

MSc student, MIREA – Russian Technological University, Institute of Fine Chemical Technologies named after Lomonosov, Moscow, Russian Federation; research technician, Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russian Federation; e-mail: alexandrov1996@yandex.ru.

Mariya N. Mayakova, Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Moscow 119991, Russian Federation сKurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences,

PhD in Chemistry, Researcher, Prokhorov General Physics Institute of the Russian
Academy of Science, Moscow, Russian Federation; e-mail: mn.mayakova@gmail.com

Valery V. Voronov, Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Moscow 119991, Russian Federation сKurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

PhD in Physics and Mathematics, Head of the Laboratory, Prokhorov General Physics
Institute of the Russian Academy of Science, Moscow, Russian Federation; e-mail: voronov@lst.gpi.ru.

Daria V. Pominova, Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Moscow 119991, Russian Federation Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

PhD in Physics and Mathematics, Researcher, Prokhorov General Physics Institute of the
Russian Academy of Science, Moscow, RussianFederation; e-mail: mn.mayakova@gmail.com

Sergey V. Kuznetsov, Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Moscow 119991, Russian Federation Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

PhD in Chemistry, Leading Researcher, Prokhorov General Physics Institute of the Russian Academy of Science, Moscow, Russian Federation; e-mail: kouznetzovsv@gmail.com

Alexander E. Baranchikov, Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky prospekt, Moscow 119991, Russian Federation

PhD in Chemistry, Head of the Laboratory, Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation; e-mail: a.baranchikov@yandex.ru.

Vladimir K. Ivanov, Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky prospekt, Moscow 119991, Russian Federation

DSc in Chemistry, Associate Member of the Russian Academy of Sciences, Director
of the Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences,
Moscow, Russian Federation; e-mail: van@igic.ras.ru.

Elena I. Lysakova, aMIREA - Russian Technological University, 86 Prospekt Vernadskogo, Moscow 119571, Russian Federation

PhD in Chemistry, Associate Professor, MIREA - Russian Technological University, Institute of Fine Chemical Technologies named after Lomonosov, Moscow, Russian Federation; e-mail: elenalysakova@mail.ru

Pavel P. Fedorov, Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Moscow 119991, Russian Federation сKurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences,

DSc in Chemistry, Head of the Department, Prokhorov General Physics Institute of the Russian Academy of Science, Moscow, Russian Federation; e-mail: ppfedorov@gmail.com. 

Published
2020-03-20
How to Cite
Alexandrov, A. A., Mayakova, M. N., Voronov, V. V., Pominova, D. V., Kuznetsov, S. V., Baranchikov, A. E., Ivanov, V. K., Lysakova, E. I., & Fedorov, P. P. (2020). Synthesis of Upconversion Luminophores Based on Calcium Fluoride. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 22(1). https://doi.org/10.17308/kcmf.2020.22/2524
Section
Статьи