Synthesis of Upconversion Luminophores Based on Calcium Fluoride
Abstract
The aim of our study was to synthesize a luminophore based on calcium fl uoride doped with rare-earth elements: 5 % Yb and 1 % Er, using the molten salt synthesis method.
NaNO3 was used as a solvent and sodium fluoride NaF served as the fluorinating agent. The obtained samples were analysed and described using X-ray powder diffraction analysis, energy dispersive X-ray spectroscopy, scanning electron microscopy, and luminescence spectroscopy.
During the study we also investigated the effect of the synthesis conditions on the phase composition and the particles morphology. It was determined that single-phase samples (solid solutions based on calcium fl uoride) can only be obtained at a temperature of at least 400 °C, with the optimal exposure time being 3 hours. The composition of the obtained samples was determined. It differs from the nominal composition and can be described as Ca0.88(Yb, Er)0.06Na0.06F2. It was demonstrated that the parallel insertion of sodium and rare-earth element ions increases the solubility limit of sodium fl uoride in calcium
fl uoride. The luminescence effi ciency was 1.21 %.
As a result of this study we obtained a new material with upconversion properties.
REFERENCES
- Ovsjankin V. V., Feofi lov P. P. O mehanizme summirovanija jelektronnyh vozbuzhdenij vaktivirovannyh kristallah [On the mechanism of combination of electron excitations in activated crystals]. Pis’ma v ZhJeTF = JETP Letters. 1966;3(12):494–497.
- Auzel F. Compteur quantique par transfert d’energie entre deux ions de terres rares dans un tungstate mixte et dans un verre. C. R. Acad. Sci. B. 1966;262: 1016–1019.
- Fedorov P. P., Kuznetsov S. V., Osiko V. V. Elaboration of nanofl uorides and ceramics for optical and laser applications. In: Tressaud A., Poeppelmeier K.(eds.) Photonic and electronic properties of fl uoride materials: Progress in fl uorine science series. Amsterdam:Elsevier; 2016. p. 7–31. DOI: http://doi.org/10.1016/B978-0-12-801639-8.00002-7
- Kostiv U., Rajsiglova L., Luptakova D., Pluhacek T., Vannucci L., Havlicek V., Engstova H., Jirak D., Slouf M., Makovicky P., Sedlacek R., Horak D. Biodistribution of upconversion/magnetic silica-coated NaGdF4:Yb3+/Er3+nanoparticles in mouse models. RSC Adv. 2017;7: 45997–46006. DOI: https://doi.org/10.1039/c7ra08712h
- Zhao J., Zhu Y.-J., Chen F. Microwave-assisted solvothermal synthesis and upconversion luminescence of CaF2:Yb3+/Er3+ nanocrystals. J. Colloid Interface Sci.2015;440: 39–45. DOI: http://doi.org/10.1016/j.jcis.2014.10.031
- Rakov N., Maciel G.S., Xiao M. Upconversion fl uorescence and its thermometric sensitivity of Er3+: Yb3+ co-doped SrF2 powders prepared by combustion synthesis. Electron. Mater. Lett. 2014;10(5): 985–989. DOI: https://doi.org/10.1007/s13391-014-4030-9
- Zhiping Z., Yingsen Y., Quamin S., Xiaotang L., Bingfu L., Yun Y. Preparation and characterization of CaF2:Yb3+, Er3+ up-conversion phosphor. Sci. Adv. Mater.2017;9(3–4): 523–527. DOI: https://doi.org/10.1166/sam.2017.2334
- Vakhrenev R. G., Mayakova M. N., Kuznetsov S. V., Ryabova A. V., Pominova D. V., Voronov V. V., Fedorov P. P. The research of synthesis and luminescentcharacteristics of calcium fluoride doped with ytterbium and erbium for biomedical application. Kondensirovannye sredy i mezhfaznye granicy = Condensed Matter and Interphases. 2016;18(4): 487–493. Available at: https://journals.vsu.ru/kcmf/article/view/157 (In Russ., abstract in Eng.)
- Yu. S., Zhi Y., Su H. Hydrothermal synthesis and upconversion properties of CaF2:Er3+/Yb3+ nanocrystals. J. Nanosci. Nanotechnol. 2014;14: 3380–3386. DOI:https://doi.org/10.1166/jnn.2014.7991
- Ansaru A. A., Yadav R., Rai S. B. Physiochemicalproperties of greatly enhanced photoluminescence of aqueous dispersible upconversion CaF2:Yb/Ernanoparticles. Photochem. Photobiol. Sci. 2017;16: 890–896. DOI: https://doi.org/10.1039/c6pp00448b
- Rehmer A., Scheurell K., Kemnitz E., Formation of nanoscopic CaF2 via a fl uorolytic sol–gel process for antireflective coatings. J. Mater. Chem. C. 2015;3:1716–1723. DOI: http://doi.org/10.1039/c4tc02510e
- Ritter B., Krahl T., Scholz G., Kemnitz E. Local Structures of Solid Solutions Sr1–xYxF2+x (x = 0...0.5) with fluorite structure prepared by sol−gel and mechanochemical syntheses. J. Phys. Chem. C. 2016;120(16): 8992–8999. DOI: http://doi.org/10.1021/acs.jpcc.6b01834
- Fedorov P. P., Mayakova M. N., Аlexandrov А. А., Voronov V. V., Kuznetsov S. V., Baranchikov A. E., Ivanov V. K. The melt of sodium nitrate as a new medium for synthesis of fl uorides. Inorganics. 2018;6: 38. DOI: https://doi.org/10.3390/inorganics6020038
- Ha J.-W., Sohn E.-H., Park I. J., Lee S.-B. Preparation of CaF2 microspheres by thermal decomposition of trifl uoroacetate precursor in molten salt medium. Mater. Lett. 2017;209: 357–359. DOI: http://doi.org/10.1016/j.matlet.2017.08.029
- Chen C., Sun L.-D., Li Z.-X., Li L.-L., Zhung J., Zhang Y.-W., Yan C.-H. Ionic liquid-based route to spherical NaYF4 nanoclusters with the assistance of microwave radiation and their multicolor upconversion luminescence. Langmuir. 2010;26(11): 8797–8803. DOI: http://doi.org/10.1021/la904545a
- Guo H., Guo Y., Noh H. M., Moon B. K., Park S. H., Jeong J. H., Kim K. H. Elaboration, structure and luminescence of sphere-like CaF2:RE submicroparticlesby ionic liquids based hydrothermal process. J. Nanosci. Nanotechnol. 2016;16: 1146–1150. DOI: https://doi.org/10.1166/jnn.2016.10800
- Deng X., Dai Y., Liu J., Zhou Y., Ma P., Cheng Z., Chen Y., Deng K., Li X., Hou Z., Li C., Lin J. Multifunctional hollow CaF2:Yb3+/Er3+/Mn2+-poly(2-Aminoethyl methacrylate) microspheres for Pt(IV) pro-drug delivery and tri-modal imaging. Biomaterials.2015;50: 154–163. DOI: https://doi.org/10.1016/j.biomaterials.2015.01.040
- Liang L., Liu Y., Bu C., Guo L., Sun W., Nuang N., Peng T., Sebo B., Pan M., Liu W., Guo S., Zhao X.-Z. Highly uniform, bifunctional core/double shell structured b-NaYF4:Er3+, Yb3+ @ SiO2@TiO2 hexagonal sub microprisms for high performance dye sensitized solar cells. Adv. Mater. 2013;25: 2174–2180. DOI: https://doi.org/10.1002/adma.201204847
- Balabhadra S., Debasu M. L., Brites C. D. S., Ferreira R. A. S. Upconverting nanoparticles working as primary thermometers in different media. J. Phys. Chem. C. 2017;121: 13962–13968. DOI: https://doi.org/10.1021/acs.jpcc.7b04827
- Rozhnova Yu. A., Kuznetsov S. V., Voronov V. V., Fedorov P. P. Synthesis of up-conversion Ho3+ and Er3+ doped strontium fl uoride luminophores for visualiserof two-micron radiation. Kondensirovannye sredy i mezhfaznye granicy = Condensed Matter and Interphases. 2016;18(3): 408–413. Available at: https://journals.vsu.ru/kcmf/article/view/150 (In Russ., abstract in Eng.)
- Rozhnova Yu. A., Luginina A. A., Voronov V. V., Ermakov R. P., Kuznetsov S. V., Ryabova A. V., Pominova D. V., Arbenina V. V., Osiko V. V., Fedorov P. P. White light luminophores based on Yb3+/Er3+/Tm3+- coactivated strontium fl uoride powders. Mater. Chem. Phys. 2014; 148: 201–207. DOI: https://doi.org/10.1016/j.matchemphys.2014.07.032
- Kuznetsov S., Ermakova Yu., Voronov V., Fedorov P., Busko D., Howard I. A., Richards B. S., Turshatov A. Up-conversion quantum yields of SrF2: Yb3+, Er3+ sub-micron particles prepared by precipitation from aqueous solution. J. Mater. Chem. C. 2018;6: 598–604. DOI: https://doi.org/10.1039/c7tc04913g
- Yasyrkina D. S., Kuznetsov S. V., Ryabova A. V., Pominova D. V., Voronov V. V., Ermakov R.P., Fedorov P. P. Dependence of quantum yield of upconversion luminescence on the composition of f luorite-type solid solution NaY1–x–yYbxEryF4. Nanosystems: physics, chemistry, mathematics. 2013;4(5): 648–656. Available at: https://cyberleninka.ru/article/n/dependence-of-quantum-yield-of-upconversion-luminescence-on-the-composition-offluorite-type-solid-solution-nay-1-x-yyb-xer-yf-4
- Ryabova A. V., Pominova D. V., Krut’ko V. A., Komova M. G., Loschenov V. B. Spectroscopic research of upconversion nanomaterials based on complex oxide compounds doped with rare-earth ion pairs: Benefit for cancer diagnostics by upconversion fluorescence and radio sensitive methods. Photon Lasers Med. 2013;2: 117–128. DOI: https://doi.org/10.1515/plm-2013-0013
- Fedorov P. P., Sobolev B. P. Concentration dependence of unit-cell parameters of phases M1–xRxF2+x with the fluorite structure. Sov. Phys. Crystallogr. 1992;37(5): 1210–1219.
- Fedorov P. P., Mayakova M. N., Kuznetsov S. V., Maslov V. A., Pynenkov A. A., Uslamina M. A., Nishchev K. N., Sorokin N. I., Baranchikov A. E., Ivanov V. K. Phase diagram of the NaF–CaF2 system and the electrical conductivity of a CaF2-based solid solution. Rus. J. Inorg. Chem. 2016;61(11): 1529–1536. DOI: https://doi.org/10.1134/S003602361611005X
- Sobolev B. P. The rare earth trifl uorides. P. 1. The high-temperature chemistry of the rare earth trifl uorides. Barcelona: Institut d’Estudis Catalans; 2000. 521 p. 28. Fedorov P. P., Rappo A. V. NaF-CaF2-YbF3 phase diagram. Rus. J. Inorg. Chem. 2008;53(7): 1210–1213. DOI: https://doi.org/10.1134/S0036023608070231
- Fedorov P. P., Rappo A. V. NaF-CaF2-YbF3 phase diagram. Rus. J. Inorg. Chem. 2008;53(7): 1210–1213. DOI: https://doi.org/10.1134/S0036023608070231