Effect of the morphology and composition of trimetallic PtCuAu/C catalysts on the activity and stability of the methanol oxidation reaction
Abstract
A study on the influence of the method for obtaining trimetallic PtCuAu/C catalysts on their activity in the oxidation of methanol has been carried out.
The structural characteristics of the obtained trimetallic catalysts have been studied by X-ray diffraction and transmission electron microscopy. The nanoparticles of the material obtained by the galvanic synthesis method had a size twice as large (~ 6 nm) than the nanoparticles of the material obtained by the co-deposition of metal precursors. According to the results from the accelerated stress testing of catalysts, it was found that the material obtained by the galvanic method of substitution of copper atoms with gold had a higher residual activity in the oxidation of methanol than the commercial Pt/C analogue.
This study shows the potential of obtaining and using multicomponent platinum-containing nanoparticles deposited on a carbon carrier as effective catalysts for use in methanol fuel cells.
Downloads
References
Alias M. S., Kamarudin S. K., Zainoodin A. M., Masdar M. S. Active direct methanol fuel cell: An overview. International Journal of Hydrogen Energy. 2020;45(38): 19620–19641. https://doi.org/10.1016/j.ijhydene.2020.04.202
Gwak G., Kim D., Lee S. Ju H. Luo Y., Zhao J. Studies of the methanol crossover and cell performance behaviors of high temperature-direct methanol fuel cells (HT-DMFCs). International Journal of Hydrogen Energy. 2018;43(30): 13999–14011. https://doi.org/10.1016/j.ijhydene.2017.11.029
Hamnett A. Mechanism and electrocatalysis in the direct methanol fuel cell. Catalysis Today. 1997;38(4): 445–457. https://doi.org/10.1016/S0920-5861(97)00054-0
Wu M., Wu X., Zhang L., Abdelhafiz A., Chang I., Qu C., Jiang Y., Zeng J., Alamgir F. Cu@Pt catalysts prepared by galvanic replacement of polyhedral copper nanoparticles for polymer electrolyte membrane fuel cells. Electrochimica Acta. 2019;306: 167–174. https://doi.org/10.1016/j.electacta.2019.03.111
Qian J., Wei W., Huang X., Tao Y., Chen K., Tang X. A study of different polyphosphazene-coated carbon nanotubes as a Pt–Co catalyst support for methanol oxidation fuel cell. Journal of Power Sources. 2012;210: 345–349. https://doi.org/10.1016/j.jpowsour.2012.03.012
Fang B., Liu Z., Bao Y., Feng L. Unstable Ni leaching in MOF-derived PtNi-C catalyst with improved performance for alcohols fuel electrooxidation. Chinese Chemical Letters. 2020;31(9): 2259–2262. https://doi.org/10.1016/j.cclet.2020.02.045
Mansor M., Timmiati S, Lim K, Wong W, Kamarudin S. K., Kamarudin N. H. N. Recent progress of anode catalysts and their support materials for methanol electrooxidation reaction. International Journal of Hydrogen Energy. 2019;44: 14744-69. https://doi.org/10.1016/j.ijhydene.2019.04.100
An X.-S., Fan Y.-J., Chen D.-J., Wang Q., Zhou Z.‑Y., Sun S.-G. Enhanced activity of rare earth doped PtRu/C catalysts for methanol electrooxidation. Electrochimica Acta. 2011;56(24): 8912–8918. https://doi.org/10.1016/j.electacta.2011.07.106
Sulaiman J, Zhu S, Xing Z, Chang Q, Shao M. Pt-Ni octahedra as electrocatalysts for ethanol electrooxidation reaction. ACS Catalysis. 2017;7: 5134–5141. https://pubs.acs.org/doi/10.1021/acscatal.7b01435
Page T, Johnson R, Hormes J, Noding S, Rambabu B. A study of methanol electro-oxidation reactions in carbon membrane electrodes and structural properties of Pt alloy electrocatalysts by EXAFS. Journal of Electroanalytical Chemistry. 2000;485: 34–41. https://doi.org/10.1016/S0022-0728(00)00090-5
Baronia R, Goel J, Tiwari S, Singh P. Efficient electro-oxidation of methanol using PtCo nanocatalysts supported reduced graphene oxide matrix as anode for DMFC. International Journal of Hydrogen Energy. 2017;42:10238–10247. https://doi.org/10.1016/j.ijhydene.2017.03.011
Markovic N, Gasteiger H, Ross P, Jiang X, Villegas I., Weaver M.J. Electro-oxidation mechanisms of methanol and formic acid on Pt–Ru alloy surfaces. Electrochimica Acta. 1995;40: 91-8.
https://doi.org/10.1016/0013-4686(94)00241-R
Wang X., Zhang L., Wang F., Yu J., Zhu H. Nickel-introduced structurally ordered PtCuNi/C as high performance electrocatalyst for oxygen reduction reaction. Progress in Natural Science: Materials International. 2020;30(6): 905–911. https://doi.org/10.1016/j.pnsc.2020.10.017
Wang X., Zhang L., Gong H., Zhu Y., Zhao H., Fu Y. Dealloyed PtAuCu electrocatalyst to improve the activity and stability towards both oxygen reduction and methanol oxidation reactions. Electrochimica Acta. 2016;212: 277–285. https://doi.org/10.1016/j.electacta.2016.07.028
Sarkar A., Murugan A. V., Manthiram A. Rapid microwave-assisted solvothermal synthesis of methanol tolerant Pt-Pd-Co nanoalloy electrocatalysts. Fuel Cells. 2010;10(3): 375–383. https://doi.org/10.1002/fuce.200900139
Srivastava R., Mani P., Hanh N., Strasser P. Efficient oxygen reduction fuel cell electrocatalysis on voltammetrically dealloyed Pt-Cu-Co nanoparticles. Angewandte Chemie - International Edition. 2007;46(47): 8988–8991. https://doi.org/10.1002/anie.200703331
Khatib F. N., Wilberforce T., Ijaodola O., Ogungbemi E., El-Hassan Z., Durrant A., Thompson J., Olabi A.G., Material degradation of components in polymer electrolyte membrane (PEM) electrolytic cell and mitigation mechanisms: Renewable and Sustainable Energy Reviews. 2019;111: 1–14. https://doi.org/10.1016/j.rser.2019.05.007
Belenov S. V., Men’shchikov V. S., Nikulin A. Y., Novikovskii N. M. PtCu/C materials doped with different amounts of gold as the catalysts of oxygen electroreduction and methanol electrooxidation. Russian Journal of Electrochemistry. 2020;56(8): 660–668. https://doi.org/10.1134/S1023193520080029
Belenov S. V., Menschikov V. S., Nevelskaya A. K., Rezvan D. V. Influence of PtCuAu’s nanoparticle structure on its activity in methanol oxidation reaction. Nanotechnol Russia. 2019;14(11-12): 557– 564. https://doi.org/10.1134/S1995078019060028
Alekseenko A. A., Guterman V. E., Volochaev V. A., Belenov, S. V. Effect of wet synthesis conditions on the microstructure and active surface area of Pt/C catalysts. Russ. J. Inorganic Materials. 2015;51(12): 1258–1263. http://dx.doi.org/10.1134/S0020168515120018
Guterman V. E., Belenov S. V., Pakharev A. Yu., Min M., Tabachkova N. Yu., Mikheykina E. B., Vysochina L. L., Lastovina T. A. Pt-M/C (M = Cu, Ag) electrocatalysts with an inhomogeneous distribution of metals in the nanoparticles. International Journal of Hydrogen Energy. 2016;41(3): 1609–1626. https://doi.org/10.1016/j.ijhydene.2015.11.002
Brugeman S. A., Zekhtor M. Yu., Novikovskiy N. M. Universal Roentgen Spectra (UniveRS). Certificate of state registration of the computer program no. 2010615318 (Russia). 2010.
Langford J. I., Wilson A. J. C. Scherrer after Sixty Years: A Survey and Some New Results in the Determination of Crystallite Size. Journal of Applied Crystallography. 1978;11: 102–103. https://doi.org/10.1107/S0021889878012844
Guterman, V. E., Belenov, S. V., Lastovina, T. A., Fokina, E. P., Prutsakova, N. V., Konstantinova, Y. B. Microstructure and electrochemically active surface area of PtM/C electrocatalysts. Russian Journal of Electrochemistry. 2011;47(8) 997–1004. https://doi.org/10.1134/S1023193511080052
Groger O., Gasteiger H. A., Suchsland J. P. Review—Electromobility: Batteries or Fuel Cells? Journal of The Electrochemical Society. 2015;162(14): 2605–2623. http://dx.doi.org/10.1149/2.0211514jes
Garsany Y., Ge J., St-Pierre J., Rocheleau R., Swider-Lyons K. Analytical procedure for accurate comparison of rotating disk electrode results for the oxygen reduction activity of Pt/C. Journal of The Electrochemical Society. 2014;161(5): 628–640. http://dx.doi.org/10.1149/2.036405jes
Banham D., Ye S. Current status and future development of catalyst materials and catalyst layers for proton exchange membrane fuel cells: An industrial perspective. ACS Energy Letters. 2017;2(3): 629–638. https://doi.org/10.1021/acsenergylett.6b00644
Zhang C., Zhang Y., Xiao H., Zhang J., Li L., Wang L., Bai Q., Liu M., Wang Z, Sui N. Superior catalytic
performance and CO tolerance of PtCu/graphdiyne electrocatalyst toward methanol oxidation reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021;612: 125960. https://doi.org/10.1016/j.colsurfa.2020.125960
Menshikov V. S. , Novomlincky I. N. ,Belenov S. V., Alekseenko A. A., Safronenko O. I., Guterman V. E. ethanol, ethanol, and formic acid oxidation on new platinum-containing catalysts. Catalysts. 2021;11(2): 158–176. https://doi.org/10.3390/catal11020158
Guo J. W., Zhao T. S., Prabhuram J., Chen R., Wong C. W. Preparation and characterization of a PtRu/C canocatalysts for direct methanol fuel cell. Electrochimica Acta. 2005;51(4): 754–763. https://doi.org/10.1016/j.electacta.2005.05.056
Shao Y., Yin G., Gao Y. Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell. Journal of Power Sources. 2007;171(2): 558–566. https://doi.org/10.1016/j.jpowsour.2007.07.004
Pryadchenko V. V., Srabionyan V. V., Kurzin A. A., Bulat N. V., Shemet D. B., Avakyan L. A., Belenov S. V., Volochaev V. A., Zizak I., Guterman V. E., Bugaev L. A. Bimetallic Pt Cunan oparticlesin Pt Cu/Celectrocatalysts: structural and electrochemical characterization. Applied Catalysis A: General. 2016;525: 226–236. https://doi.org/10.1016/j.apcata.2016.08.008
Guterman V. E., Belenov S. V., Alekseenko A. A., Lin R., Tabachkova N. Y., Safronenko O. I. Activity and stability of Pt/C and Pt-Cu/C. Electrocatalysts. 2018;9(5): 550–562. https://doi.org/10.1007/s12678-017-0451-1
Guterman V. E., Belenov S. V., Alekseenko A. A., Volochaev V. A., Tabachkova N. Y. The relationship between activity and stability of deposited platinumcarbon electrocatalysts. Russian Journal of Electrochemistry. 2017;53(5): 531–539. https://doi.org/10.1134/S1023193517050081
Zhu H., Li X., Wang F. Synthesis and characterization of Cu@Pt/C core-shell structured catalysts for proton exchange membrane fuel cell. International Journal of Hydrogen Energy. 2011;36(15) 9151–9154. https://doi.org/10.1016/j.ijhydene.2011.04.224
Wang Y., Zhou H., Sun P., Chen T. Exceptional methanol electro-oxidation activity by bimetallic concave and dendritic Pt-Cu nanocrystals catalysts. Journal of Power Sources. 2014;245(1): 663–670. https://doi.org/10.1016/j.jpowsour.2013.07.015
Na H., Choi H., Oh J. W., Jung Y. S., Cho Y. S. Enhanced CO oxidation and cyclic activities in threedimensional platinum/indium tin oxide/carbon black electrocatalysts processed by cathodic arc deposition. ACS Applied Materials and Interfaces. 2019;11(28): 25179–25185. https://doi.org/10.1021/acsami.9b06159
Copyright (c) 2022 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.