Quadratic averaging regression of expert estimates of smartphones quality

  • Alexander A. Makhin Novosibirsk State University of Economics and Management
Keywords: multi-objective optimization, normalized mean function, shift-invariant polynomial, aggregation operator, weight coefficient, complex index, integral indicator, expert estimate, smartphones rating, functional weight, decision making

Abstract

Importance: the article is devoted to the problem of constructing ratings of homogeneous objects in terms of their quality, taking into account several particular qualities, for which it is proposed to use aggregating, idempotent, strictly monotonic, shift-invariant polynomials (SM) in accordance with the methodology described in [3], [7]. Purpose: building a quadratic SM and using it to model the overall, consumer rating of smartphones in four particular qualities – the main and front cameras, display, battery, using a test (empirical) set of nine smartphones. Checking the practical applicability of the SM-s for calculating complex quality indicators and developing recommendations for the application of this methodology.Research design: based on data from the official website of the DXOMARK quality assessment laboratory, there were built smartphones particular ratings for four qualities. Independently of DXOMARK, expert estimates of the overall (multi-criteria) rating of smartphones in the tested set were obtained. By analogy with the expert-statistical method for determining the weight coefficients, there were found the coefficients of the quadratic SM which is approximating the expert estimates of the complex quality.Results: the practical applicability of the method of modeling multi-criteria ratings by means of SM-s of the degrees above the first has been proved. An example of constructing a quadratic SM, which significantly increases the number of customized parameters of a complex quality indicator, is considered in detail. A recommendation is proposed for the development of this methodology in order to bring its objectivity to the level of responsible decision-making.

Downloads

Download data is not yet available.

Author Biography

Alexander A. Makhin , Novosibirsk State University of Economics and Management

graduate student

References

Азгальдов Г.Г., Райхман Э.П. О квалиметрии. Под ред. Гличева А.В. Москва, Издательство стандартов, 1973, с. 172.

Айвазян С.А., Бухштабер В.М., Енюков И.С., Мешалкин Л.Д. Прикладная статистика / Классификация и снижение размерности. Москва, Финансы и статистика, 1989, с. 334, 421-424.

Брызгалин Г.И. Введение в теорию качества. Волгоград, издательство Волгоградского политехнического института, 1988, с. 91.

Зотьев Д.Б. К проблеме определения весовых коэффициентов на основании экспертных оценок // Заводская лаборатория. Диагностика материалов, 2011, 77, no. 1, с. 75-78.

Зотьев Д.Б. Нормализованные средние и проблема свертывания показателей качества // Справочник. Инженерный журнал, 146, 2009, no. 5, с. 43-48.

Зотьев Д.Б. О нормализованных средних критериях, интерполирующих экспертные оценки // Справочник. Инженерный журнал, 2012, 184, no. 7, с. 50-56.

Кондрашова Н.В., Данилов И.С. Совершенствование алгоритма расчета интегрального показателя устойчивого развития экономического субъекта // Современная экономика: проблемы и решения, 2002, no. 5, с. 54-66.

Calvo T., Kolesárová A., Komorníková M., Mesiar R. Aggregation operators: Properties, classes and construction methods, Aggregation operators. New trends and applications // Aggregation operators, 2002, pp. 3-103.

Goswami S.S., Behera D. K. Evaluation of the best smartphone model in the market by integrating fuzzy-AHP and PROMETHEE decision-making approach // Decision, 2021, 48, no. 1, pp. 71–96.

Marler R., Arora J. The weighted sum method for multi-objective optimization: New insights // Structural and Multidisciplinary Optimization, 2010, no. 41, pp. 853-862.

Published
2023-02-09
How to Cite
Makhin , A. A. (2023). Quadratic averaging regression of expert estimates of smartphones quality. Modern Economics: Problems and Solutions, 12, 8-19. Retrieved from https://journals.vsu.ru/meps/article/view/11030
Section
Mathematical Methods in Economics