Game theoretical models of investor behavior in the financial market
Abstract
Importance: the behavior of market participants in decision-making began to arouse interest among researchers in the mid-twentieth century. It was at this time that publications of classical theories began to appear, describing the behavior of investors and the criteria for making decisions by them. These theories are based on the assumption of the rationality of individuals and their aversion to risk. Purpose: the reasons for the efficiency of investment decision making in the financial market. Research design: classical theories received wide publicity, because thanks to them a breakthrough was made in economic and financial sciences. Since then, the events taking place in the market could be explained in terms of the provisions of the emerging theories. Results: game theory is a complementary asset analysis tool and should not be used as the sole criterion. In order to conduct a more complete analysis, it is necessary to combine fundamental analysis, technical analysis and game theory analysis. The article notes that game-theoretic approaches continue to be actively developed, and it is believed that some developments based on richer information models are most relevant for modern financial markets. The results show that the sustainable development agenda needs to be refocused with more attention to the analysis of the key determinants driven by financial restructuring, which faces the challenge of balancing the relationship between people and nature and mobilizing more capital for sustainable development. Investing in an inclusive and sustainable economy can provide important opportunities for shared prosperity. Therefore, it should be concluded that there are many ways to assess risk in 2023, and new methods will appear in the future, but at the same time, the game theory model is one of the most effective risk assessment tools. Using mathematical methods and specialized risk assessment methods, game theory makes it possible to find optimal strategies in various areas, including decision-making under conditions of uncertainty and risk in financial markets.
Downloads
References
Alí S., Berge M.L. et al. Replicating patterns of prospect theory for decision under risk / S. Alí, M. L. Berge, Ruggeri K. et. al // Nature Human Behavior, 2020, Vol. 4.
Barber B. All That Glitters: The Effect of Attention and News on the Buying Behavior of Individual and Institutional Investors [Electronic resource] / B. Barber, T. Odean // Review of Financial Studies, 2008, Vol. 21, Issue 2.
Ploner M. Hold on to it? An experimental analysis of the disposition effect [Electronic resource] // Judgement and Decision Making, 2017, Vol. 12, Issue 2.
Биета Ф., Смилянец П. Теория игр и финансовые рынки // Вопросы экономики, 2007, no. 10, с. 10-17.
Клитина Н.А. Формирование портфелей ценных бумаг для различных типов инвесторов // Финансовая аналитика: проблемы и решения, 2011, no. 23.
Клитина Н.А. Формирование оптимальных стратегий инвестора на Российском фондовом рынке с помощью методов теории игр // Финансовая аналитика: проблемы и решения, 2014, no. 47.
Лабскер Л.Г. Игровые методы в управлении экономикой и бизнесом: учебное пособие / Лабскер Л.Г., Бабешко Л.О. Москва, Дело, 2001. 464 с.
Лабскер Л.Г. Теория критериев оптимальности и экономические решения. Москва, КНОРУС, 2011. 742 с.
Лабскер Л.Г. Экономические игры с природой (практикум с решениями задач): учебное пособие / Лабскер Л.Г., Ященко Н.А. Москва, КНОРУС, 2015. 512 с.
Прянишникова М.В. Основные закономерности развития рынка ценных бумаг и их влияние на результаты портфельного инвестирования // Сб. науч. тр. «Тенденции и проблемы социально-экономического развития России в условиях цифровизации», СГТУ, 2021.
Слива И.И. Применение метода теории игр для решения экономических задач // Известия Московского государственного технического университета МАМИ, 2013, no. 1.
Чернявский А.Д. Теория игр, полезность и причинно-следственная связь // Интернет-журнал «Науковедение», 2015, no. (26), т. 7, с. 92-96.