Многоагентные системы: обзор современных подходов к моделированию и проектированию (Часть 2)
Аннотация
Агент-ориентированные технологии позволяют выполнять сложные вычисления, решать многоуровневые задачи, осуществлять комплексное управление, имитировать реальные процессы, поэтому они имеют большое прикладное и практическое значение. Во второй части обзорного исследования рассматриваются различные подходы к моделированию многоагентных систем, современные направления их проектирования, приведены примеры инструментов разработки. Большое внимание уделено существующим приложениям многоагентных систем. Недостатком классического подхода к моделированию являются «жесткие» модели и заранее заданные протоколы коммуникации агентов, что не позволяет в полной мере реализовать такие свойства агентных систем, как самоорганизация, адаптация, способность к обучению и самообучению. Эволюционный подход базируется на организации вычислений на основе взаимодействий, при этом возникающие структуры требуют дополнительного анализа. Процесс разработки агентных приложений требует решения следующих основных задач: анализ предметной области и ее формализация; выбор модели многоагентной системы и формирование ее архитектуры; выбор модели агента, спецификация его свойств и поведения; формирование схем взаимодействия агентов, а также агентов и пользователей.
Скачивания
Литература
Gorodetsky V. I., Bukhvalov O. L. and Skobelev P. O. (2017) Current state and prospects for industrial applications of multi-agent systems. Management of large systems. No 66. P. 94–157.
Luck M. [et al.] (2005) Agent Technology: Computing as Interaction (A Roadmap for Agent Based Computing). AgentLink. URL
Yanushko V. V., Dalekin A. V. and Yerkin S. N. (2006) Analysis of technologies used in multi-agent systems. Promising Information Technologies and Intelligent Systems. No 4. P. 30–37.
Ledeneva T. M. and Prinev M. A. (2024) Multi-agent systems: agent models and problem statements providing their characteristic properties (part 1). Bulletin of the Voronezh State University. Series: System analysis and Information Technology. No 3. P. 50–73.
Toporkov V. V. (2006) Models of distributed computing. Moscow : FIZMATLIT. 320 p.
Tarasov V. B. (2002) From multi-agent systems to intelligent organizations. Moscow : Bukinist, 2002. 352 p.
Mitrakov A. A. Approaches to the construction of agent-based modeling systems.
Gladkov L. A. and Gladkova N. V. (2019) Development of new approaches to the design of multi-agent systems. Computer science, computing technology and engineering education. No 2 (35). P. 16–23.
Gladkov L. A. and Gladkova N. V. (2019) Evolutionary design as a tool for developing multi-agent systems. Bulletin of SFedU. Technical sciences. No 4 (206). P. 26–36.
Gladkov L. A. and Gladkova N. V. (2021) Evolutionary design of multi-agent systems. Bulletin of SFedU. Technical sciences. No 4 (221). P. 51–61.
Belousova A. I. [et al.] (2011) An approach to the formation of a multi-level model of a multi-agent system using mivars. Prospects of Science. No 5 (20). P. 57–61.
Buriy A. S., Frolov V. A. and Kulyanitsa A. P. (2023) The evolution of agent-based modeling. Part 2 Simulation modeling. Information and economic aspects of standardization and technical regulation. No 6 (75). P. 46–52.
Kirikov I. A., Kolesnikov A. V. and Listopad S. V. (2010). Study of the effect of self-organization of decision support in computer systems on the example of multi-agent systems. Bulletin of the I. Kant State University of Russia. No 10. P. 79–90.
Matorin S. I. and Mikhelev S. I. (2008) Formalization of multi-agent systems using pattern theory. Bulletin of the National Technical University “Kharkiv Polytechnic Institute”. Series: Computer Science and Modeling. No 49. P. 96–100.
Chernyshev S. A. (2022) Classification of common design patterns for multi-agent systems. Software products and systems. No 4. P. 670–679.
Gamma E. [et al.] (1994) Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Publ. 416 p.
Juziuk J., Weyns D. and Holvoet T. (2014) Design patterns for multi-agent systems: A systematic literature review. In: Agent-Oriented Software Engineering. P. 79–99.
Igumnov A. V. and Sarajishvili S. E. (2014) Reliability assessment of redundant multi-agent systems. Science and education: scientific publication of Bauman Moscow State Technical University. No 1. P. 83–114.
Noorunnisa S. [et al.] (2021) Conceptual Model for Human-Agent Teams. In Agents and Multi-Agent Systems: Technologies and Applications 2021: Proceedings of 15th KES International Conference, KES-AMSTA 2021, Springer: Singapore. P. 17–26.
Sato K. [et al.] (2021) Multi-Agent Task Allocation Based on Reciprocal Trust in Distributed Environments. In Proceedings of the Agents and Multi-Agent Systems: Technologies and Applications 2021, Springer: Singapore. P. 477-488.
Mutovkina N. Yu., Klyushin A. Yu. and Kuznetsov V. N. (2017) Criteria for the Efficiency of Forming the Optimal Composition of a Multi-Agent System. In the collection: New word in science: collection of materials. III Int. scientificpractical. conf. P. 139–141.
Dubenko Yu. V., Dyshkant E. E. and Gura D. A. (2020) Analysis of hierarchical reinforcement learning for the implementation of behavioral strategies of intelligent agents. Bulletin of Computer and Information Technologies. No 9. P. 35–45.
Dubenko Yu. V. and Rudeshko N. A. (2022) A reinforcement learning algorithm for decentralized multi-agent systems based on the exchange of experience and training of agents in random interaction. Vestn. Voronezh. State Technical University Unita. Vol. 14. No 18. P. 30–36.
Dubenko Yu. V. (2022) Algorithm of collective interaction of intelligent agents in centralized multi-agent systems. Bulletin of Computer and Information Technologies. No 10. P. 30–42.
Goncharenko V. A. and Zabuzov V. S. (2022) Methods for constructing cluster space systems based on multi-agent technologies. Intelligent technologies in transport. No 2 (30). P. 32–40.
Lukatsky A. M. and Nesykh K. V. (2016) Instrumental means and architecture of the multi-agent modeling system. In the collection: Management of the development of large-scale systems MLSD’2016 – Proc. ninth international. Conf. P. 203–211.
Kharin I. G. and Yanovsky A. V. (2014) Open multi-agent environment: concept and platform. Information technologies and computing systems. No 4. P. 12–24.
Leitao P. and Vrba P. (2011–2012) Recent Developments and Future Trends of Industrial Agents. Proc. of «Holonic and Multi-Agent Systems for Manufacturing» (HoloMAS-2011), Vol. 6867 of the series Lecture Notes in Computer Science. Springer Verlag. P. 15–28.
Application of supercomputer technologies for modeling socio-economic systems. (2015) The economy of the region. No 2(42). P. 301–312.
Application of supercomputer technologies for modeling socio-economic systems. (2015) The economy of the region. No 2(42). P. 301–312.
Wrona Z. [et al.] (2023) Overview of Software Agent Platforms Available in 2023. Information. 14. 348.
Makarov V. L. and Bakhtizin A. R. (2013) Social modeling – a new computer breakthrough (agent-oriented models) M. : Ekonomika. 295 p.
Hossam S. [et al.] (2022) Developing Multiagent E-Learning System-Based Machine Learning and Feature Selection Techniques. Comput. Intell. Neurosci. 2941840.
Pniewski R. [et al.] (2021) Applying Software Agents to Make City Traffic Management Smarter. In Proceedings of the Second International Conference on Information Management and Machine Intelligence. P. 651–659.
Pniewski R. [et al.] (2022) Modelling and Optimizing City Traffic Using an Agent Platform. In Proceedings of the 2nd International Conference on Artificial Intelligence: Advances and Applications. P. 861–868.
Romanov P. S. (2017) Model and functional-structural diagram of the intelligent control system of the robotic system. Bulletin of the Kolomna Institute (branch) of the Moscow Polytechnic University. Series: Natural and technical sciences. No 10. P. 118–130.
Stepanov M. F. [et al.] (2021) Study of functioning algorithms of an intelligent control system for a reconnaissance robotic complex. Extreme Robotics. Vol. 1, No 1. P. 136–142.
Bourceret A., Amblard L. and Mathias J. D. (2021) Governance in social-ecological agent-based models: a review. Ecol. Soc. 26. DOI: 10.5751/ES-12440-260238
Jager W. (2021) Using agent-based modelling to explore behavioural dynamics affecting our climate. Curr. Opin. Psychol. No 42. P. 13–139.
Telnov Yu. F. [et al.] (2023) Development of models of production and business processes of network enterprises based on multi-agent systems. Software products and systems. Vol. 36, No 4. P. 632–643.
Fazio M. [et al.] (2022) Exploring the impact of mobility restrictions on the COVID-19 spreading through an agent-based approach. J. Transp. Health. 25. 101373.
Akbari Z. and Unland R. (2021) A Holonic Multi-Agent System for the Support of the Differential Diagnosis Process in Medicine. Universität Duisburg-Essen: Duisburg, Germany.
Booth J. (2019) Marathon Environments: Multi-Agent Continuous Control Benchmarks in a Modern Video Game Engine. arXiv. arXiv:1902.09097. DOI
Khovanskov S. A., Litvinenko V. A. and Khovanskova V. S. (2016) Algorithm for organizing secure distributed computing based on a multi-agent. Bulletin of the Southern Federal University. Technical sciences. No 10 (183). P. 146–158.
Khovanskov S. A., Litvinenko V. A. and Khovanskova V. S. (2019) Methodology for protecting distributed computing in a multi-agent system. Bulletin of the Southern Federal University. Technical sciences. No 4 (206). P. 68–80.
Gorodetsky V. I. and Kotenko I. V. (2000) Architecture of basic agents of a multi-agent in formation security system in computer networks Bulletin of TRTU. No 2 (16). P. 38–51.
Rykshin M. S. (2023) Approaches to the development of an algorithm for mutual information coordination of intelligent agents in a distributed multi-agent monitoring system. Modeling, optimization and information technology. Vol. 11, No 3 (42). P. 16–27.
Denisova D. A. and Garshina V. V. (2024) Loader navigation in logistics using multi-agent reinforcement learning. Informatics: problems, methods, technologies: collection of materials of the XXIV International Scientific and Practical Conference. edited by D. N. Borisov; Voronezh, Voronezh State University, February 14–15, 2024. Voronezh, VSU. P. 656–664.
Denisova D. A. and Garshina V. V. (2024) Algorithms of multi-agent learning with reinforcement of the on-policy category. Proceedings of young scientists of the Faculty of Computer Science at VSU. No 4. edited by D. N. Borisov; Voronezh State University. Voronezh. P. 366–376.
Benchmarking Multi-Agent Deep Reinforcement Learning Algorithms in Cooperative.
The Surprising Effectiveness of PPO in Cooperative Multi-Agent. URL
RWARE: A multi-agent reinforcement learning environment. Github. URL
Gorodetsky V. I. (2012) Self-organization and multi-agent systems. I. Models of multi-agent self-organization. Proceedings of the Russian Academy of Sciences “Theory and Control Systems”. No 2. P. 92–120.
Gorodetsky V. I. (2012) Self-organization and multi-agent systems. II. Applications and development technology. Proceedings of the Russian Academy of Sciences “Theory and Control Systems”. No 3. P. 102–123.
Babkin E. A. Babkina T. S. and Ulitin B. I. (2018) Modeling the dynamics of online discussions on the Internet using multi-agent systems. Business Informatics. No 2 (44). P. 17–29.
Drogoul A. and Corbara B. MANTA: New Experimental Results on the Emergence of (Artificial) Ant Societies. URL
Smart processing of processes. URL
Galin R. R. [et al.] (2021) Effective functioning of a mixed heterogeneous team in a collaborative robotic system. Computer Science and Automation. Vol. 20, No 6. P. 1224–1253.
Claes R., Holvoet T. and Weyns D. (2011) A decentralized approach for anticipatory vehicle routing using delegate multiagent systems. IEEE Transactions on Intelligent Transportation Systems. Vol. 12, No 2. P. 364–373.
Rizvanov D. A. (2013) Algorithms for resource management in complex systems using multi-agent technologies. Bulletin of Ufa Aviation Technical University. Vol. 17, No 5 (58). P. 63–69.
Nepryaev A. A. (2020) Architecture of a cognitive multi-agent control system for a complex technical object. Eurasian Scientific Association. No 8-2 (66). P. 114–116.
Gorodetsky V. I. and Kotenko I. V. (2000) Architecture of basic agents of a multi-agent information security system in computer networks Bulletin of TRTU. No 2 (16). P. 38-51.
Yuleisi G. P. and Kholod I. I. (2020) Interaction in multi-agent systems of data mining. Bulletin of ETU “LETI”. No 3. P. 18–23.
Isaev I. D. (2023) Multi-agent systems, algorithm for pattern recognition by intelligent agents. Bulletin of Science. Vol. 4, No 11 (68). P. 651–659.
Pashkin M. P. (2006) Multi-agent intelligent distance learning system. Proceedings of SPIIRAS. Vol. 1, No 3. P. 126–137.
Julian V and Botti V. Multi-Agent Systems. Applied Sciences, 2019. – 9. – 1402. DOI
- Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.
- Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).