Взаимосвязь между атмосферным выпадением азота, наземной растительностью и почвами в лесах Ижевска
Аннотация
Цель – изучить атмосферные выпадения минерального азота (Nмин) в лесах промышленного региона для оценки взаимосвязи между его поступлением, изменением свойств почв и структуры наземной растительности. Материалы и методы. На территории города Ижевск и Завьяловского района Удмуртской Республики были изучены хвойные и лиственные леса (n = 21) на дерново-подзолистой почве. Исследования проводились на основе оценки атмосферных выпадений Nмин методом снегосъемки, опробования почв из гумусо-аккумулятивного горизонта и геоботанического описания растительности. В образцах снега и почв определяли содержание нитратов и аммония. В почве дополнительно определяли содержание общего углерода и азота, Р2О5, Сd, Pb, Zn, Cu, Ni и рН. Взаимосвязь между изученными параметрами оценивали с помощью анализа главных компонент. Результаты и обсуждение. Атмосферные выпадения Nмин на территории исследования варьировали от 0,15 до 20,6 кг га/год, в которых преобладала аммонийная форма. Анализ главных компонент показал корреляционную взаимосвязь между атмосферным выпадением Nмин, содержание в почве N-NO3, P-P2O5, Сd, Pb, Zn, Cu, Ni и баллом по экологической шкале обеспеченности почв минеральным азотом Г. Элленберга.
Скачивания
Литература
2. Zaharova M. V. Ocenka pogreshnostej dannyh nabljudenij za sostojaniem zagrjaznenija vozduha [Estimation of errors in the data of observations of the state of air pollution]. Vestnik Voronezskogo gosudarstvennogo universiteta. Seria: Geografa. Geoekologia, 2019, no. 2, pp. 65-72. DOI
3. Kramer P. D., Kozlovskij T. T. Fiziologija drevesnyh rastenij [Physiology of woody plants]. Moskow: Lesn. promtj, 1983. 464 p. (In Russ.)
4. Kudrevatyh I. Ju. Ocenka vzaimosvjazi mezhdu atmosfernym vypadeniem mineralnogo azota i rastitelnostju v lesnyh ekosistemah [Assessment of the relationship between atmospheric mineral nitrogen deposition and vegetation in forest ecosystems]. Izvestija RAN. Ser. Biol., 2017, no. 2, pp. 181-189. DOI
5. O sostojanii i ob ohrane okruzhajuschej sredy Ud-murtskoj Respubliki v 2016 g.: Gosudarstvennyj doklad [On the state and protection of the environment of the Udmurt Republic in 2016: State report]. Izhevsk, 2017. 283 p. (In Russ.)
6. Smirnov V. E., Hanina L. G., Bobrovskij M. V. Obosnovanie sistemy ekologo-cenoticheskih grupp vidov rastenij lesnoj zony Evropejskoj Rossii na osnove ekologicheskih shkal, geobotanicheskih opisanij i statisticheskogo analiza [Substantiation of the system of ecologicalcenotic groups of plant species in the forest zone of European Russia on the basis of ecological scales, geobotanical descriptions and statistical analysis]. Bjul. MOIP. Ser. Biologicheskaja, 2006., vol. 111, no. 2, pp. 36-47. (In Russ.)
7. Soldatova E. A., Purgina D. V. Povedenie soedinenij azota i ih transformacija v sisteme pochva – podzemnye vody selskohozjajstvennyh landshaftov Zapadnoj Sibiri [Behavior of nitrogen compounds and their transformation in the soil – groundwater system of agricultural landscapes of Western Siberia]. Vestnik Voronezskogo gosudarstvennogo universiteta. Seria: Geografa. Geoekologia, 2020, no. 4, pp. 32-43. DOI
8. Fedorec N. G., Bahmet O. N. Ekologicheskie osobennosti transformacii soedinenij ugleroda i azota v lesnyh pochvah [Ecological features of the transformation of carbon and nitrogen compounds in forest soils]. Petrozavodsk: Karelskij nauchnyj centr RAN, 2003. 240 p. (In Russ.)
9. Bertills U., Näsholm T. Effects of Nitrogen Deposition on Forest Ecosystems. Swedish Environmental Protection Agency, Trelleborg: Printed Berlings Skogs, 2000. 160 p.
10. Binkley D., Högberga P. Tamm Review: Revisiting the infuence of nitrogen deposition on Swedish forests. Forest Ecology and Management, 2016, vol. 368, pp. 222-239. DOI
11. Bobbink R., Hicks K., Galloway J. et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecological Applications, 2010, vol. 20, pp. 30-59.
12. Cape J. N., Tang Y. S., González-Benítez J. et al. Organic nitrogen in precipitation across Europe. Biogeosciences, 2012, vol. 9, pp. 4401-4409. DOI
13. Chen S.-P., Wang C.-H., Lin W.-D. et al. Air quality impacted by local pollution sources and beyond - Using a prominent petro-industrial complex as a study case. Environmental Pollution, 2018, vol. 236, pp. 699-705. DOI
14. De Vries W., Kros H., Reinds G. J. et al. Developments in deriving critical limits and modelling critical loads of nitrogen for terrestrial ecosystems in Europe. Alterra – rapport 1382. Alterra, 2007. 206 p.
15. Galloway J. N., Townsend A. R., Erisman J. W et al. Transformation of the nitrogen cycle: Recent trends, questions and potential solutions. Science, 2008, vol. 320, pp. 889-892. DOI
16. Houa X., Zhana X., Zhoua F. et al. Detection and attribution of nitrogen runoff trend in China’s croplands. Environmental Pollution, 2018, vol. 234, pp. 270-278. DOI: 10.1016/j.envpol.2017.11.052.
17. LeBauer D.S., Treseder K.K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 2008, vol. 89, pp. 371-380. DOI
18. Lui S., Lin F., Wu S. et al. A meta-analysis of fer-tilizer-induced soil NO and combined NO+N2O emissions. Global Change Biology, 2017, vol. 23, pp. 2520-2532. DOI
19. MacDonald J. A., Dise N. B., Matzner E., Arm-bruster M. et al. Nitrogen input together with ecosystem nitrogen enrichment predict nitrate leaching from European forests. Global Change Biology, 2002, vol. 8, pp. 1028-1033. DOI
20. McDonnell T. C., Belyazid S., Sullivan T. J. et al. Vegetation dynamics associated with changes in atmospheric nitrogen deposition and climate in hardwood forests of Shenandoah and Great Smoky Mountains National Parks, USA. Environmental Pollution, 2018, vol. 237, pp. 662-674. DOI
21. Nave L. E., Vance E. D., Swanston C. W., Curtis P. S. Fire effects on temperate forest soil C and N storage. Ecological Applications, 2011, vol. 21, iss. 4, pp. 1189-1201. DOI
22. Satyanarayana J., Reddy L. A. K., Kulshrestha M. J. et al. Chemical composition of rain water and infuence of airmass trajectories at a rural site in an ecological sensitive area of Western Ghats (India). Journal of Atmospheric Chemistry, 2010, vol. 66, pp. 101-116. DOI
23. Oulehle F., Tahovská K., Chuman T. et al. Comparison of the impacts of acid and nitrogen additions on carbon fuxes in European conifer and broadleaf forests. Environmental Pollution, 2018, vol. 238, pp. 884-893. DOI
24. Rao L. E., Parker D. R., Bytnerowicz A., Allen E. B. Nitrogen mineralization across an atmospheric nitrogen deposition gradient in Southern California deserts. Journal of Arid Environments, 2009, vol. 73, pp. 920-950. DOI
25. Sala O. E., Chapin F. S., Armesto J. J. et al. Biodiversity – global biodiversity scenarios for the year 2100. Science, 2000, vol. 287, pp. 1770-1774. DOI
26. Shi L., Zhang H., Liu T. et al. Consistent effects of canopy vs. understory nitrogen addition on the soil exchangeable cations and microbial community in two contrasting forests. Science of the Total Environment, 2016, vol. 553, pp. 349-357. DOI
27. Sutton M. A., Mason K. E., Sheppard L. J et al. Nitrogen Deposition, Critical Loads and Biodiversity. Springer, 2014. 535 p.
28. Tian P., Liu S., Wang Q., Sun T., Blagodatskaya E. Organic N deposition favours soil C sequestration by decreasing priming effect. Plant and Soil, 2019, vol. 445, iss. 1-2, pp. 439-451. DOI
29. Van Dobben V. H., De Vries W. Relation between forest vegetation, atmospheric deposition and site condi-tions at regional and European scale. Environmental Pol-lution, 2010, vol. 158, pp. 921-933. DOI
30. Wang X., Zou C., Gao X. et al. Nitrous oxide emissions in Chinese vegetable systems: A meta – analy-sis. Environmental Pollution, 2018, vol. 239, pp. 375-383. DOI