Phase equilibra in the Ag2S–Ag8GeS6–Ag8SiS6 system and some properties of solid solutions

Keywords: Argyrodite family compounds, Silver-germanium sulfide, Silver-silicon sulfide, Phase equilibria, Solid solutions, T-x diagram, Crystal structure

Abstract

     Phase equilibria in the Ag2S–Ag8SiS6–Ag8GeS6 system were studied using differential thermal analysis and powder X-ray diffraction technique. Boundary section Ag8SiS6 – Ag8GeS6, liquidus surface projection, an isothermal section of the phase diagram at 300 K, and some polythermal sections of the studied system were constructed.
      The formation of continuous series of solid solutions between both crystalline modifications of the starting compounds was determined in the Ag8SiS6–Ag8GeS6 system. The liquidus surface of the Ag2S–Ag8SiS6–Ag8GeS6 system consists of two fields corresponding to the primary crystallization of the high-temperature modifications of the HT-Ag8Si1-xGexS6 and HTAg 2S phases. Lattice parameters for both modification of solid solutions were calculated based on powder X-ray diffraction data. The concentration dependence of lattice parameters obeys Vegard’s rule.
     The obtained new phases are of interest as environmentally safe materials with thermoelectric properties and mixed ionelectron conductivity

Downloads

Download data is not yet available.

Author Biographies

Garay M. Ashirov, Institute of Catalysis and Inorganic Chemistry n.a. M. Nagiyev 113 H. Javid av., Baku Az1143, Azerbaijan

PhD student, Researcher,
Institute of Catalysis and Inorganic Chemistry named
after academician Murtuza Naghiyev (Baku,
Azerbaijan).

Kamala N Babanly, Institute of Catalysis and Inorganic Chemistry n.a. M. Nagiyev 113 H. Javid av., Baku Az1143, Azerbaijan

PhD in Chemistry, Senior
Researcher, Institute of Catalysis and Inorganic
Chemistry named after academician Murtuza Naghiyev
(Baku, Azerbaijan).

Leyla F. Mashadiyeva, Institute of Catalysis and Inorganic Chemistry n.a. M. Nagiyev 113 H. Javid av., Baku Az1143, Azerbaijan

PhD in Chemistry, Senior
Researcher, Institute of Catalysis and Inorganic
Chemistry named after academician Murtuza Naghiyev
(Baku, Azerbaijan).

Yusif A. Yusibov, Ganja State University , Heydar Aliyev, 187, Ganja AZ2000, Ganja, Azerbaijan

DSc in Chemistry, Professor,
Rector of the Ganja State University

Mahammad B. Babanly, Institute of Catalysis and Inorganic Chemistry n.a. M. Nagiyev 113 H. Javid av., Baku Az1143, Azerbaijan

DSc in Chemistry, Professor,
Associate Member of the Azerbaijan National Academy
of Sciences, Executive Director of the Institute of
Catalysis and Inorganic Chemistry named after
academician Murtuza Naghiyev (Baku, Azerbaijan).

References

Sanghoon X. L., Tengfei L. J., Zhang L. Y. Chalcogenides: From 3D to 2D and beyond. Elsevier; 2019. 398 p.

Ahluwalia G. K. Applications of chalcogenides: S, Se, and Te. Springer; 2016. 461 p.

Fujikane M., Kurosaki K., Muta H., Yamanaka S.. Thermoelectric properties of a- and b-Ag2Te. Journal of Alloys and Compounds. 2005;393(1-2): 299–301. https://doi.org/10.1016/j.jallcom.2004.10.002

Schwarzmüller S., Souchay D., Günther D., ... Oeckler O. Argyrodite-type Cu8GeSe6-x Te x(0 ≤ x ≤ 2): temperature-dependent crystal structure and thermoelectric properties. Zeitschrift für anorganische und allgemeine Chemie. 2018;644(24): 1915–1922. https://doi.org/10.1002/zaac.201800453

Acharya S., Soni A. High thermoelectric power factor in p-type Cu8GeSe6. DAE Solid State Physics Symposium 2018. 2019;2115(1): 1–3. https://doi.org/10.1063/1.5113463

Li W., Lin S., Ge B., Yang J., Zhang W., Pei Y. Low sound velocity contributing to the high thermoelectric performance of Ag8SnSe6. Advanced Science. 2016;3(11): 1600196. https://doi.org/10.1002/advs.201600196

Ghrib T., Al-Otaibi A. L., Almessiere M. A., Assaker I. B., Chtourou R. High thermoelectric figure of merit of Ag8SnS6 component prepared by electrodeposition technique. Chinese Physics Letters. 2015;32(12: 127402. https://doi.org/10.1088/0256-307x/32/12/127402

Jin M., Lin S., Li W., … Pei Y. Fabrication and thermoelectric properties of single-crystal argyrodite Ag8SnSe6. Chemistry of Materials. 2019;31(7): 2603–2610. https://doi.org/10.1021/acs.chemmater.9b00393

Shen X., Yang C.-C., Liu Y., Wang G., Tan H., Tung Y.-H., Zhou X.. High-temperature structural and thermoelectric study of argyrodite Ag8GeSe6. ACS Applied Materials & Interfaces. 2018;11(2): 2168–2176. https://doi.org/10.1021/acsami.8b19819

Charoenphakdee A., Kurosaki K., Muta H., Uno M., Yamanaka S. Ag8SiTe6: A new thermoelectric material with low thermal conductivity. Japanese Journal of Applied Physics. 2009;48(1): 01160–01169. https://doi.org/10.1143/jjap.48.011603

Jiang Q., Li S., Luo Y., Xin J., Li S., Li W., Yang J. Ecofriendly highly robust Ag8SiSe6-based thermoelectric composites with excellent performance near room temperature. ACS Applied Materials & Interfaces. 2020;12(49): 54653–54661. https://doi.org/10.1021/acsami.0c15877

Fujikane M., Kurosaki K., Muta H., Yamanaka S. Thermoelectric properties of Ag8GeTe6. Journal of Alloys and Compounds. 2005;396(1-2): 280–282. https://doi.org/10.1016/j.jallcom.2004.12.038

Semkiv I., Ilchuk H., Pawlowski M., Kusnezh V. Ag8SnSe6 argyrodite synthesis and optical properties. Opto-Electronics Review. 2017;25(1): 37–40. https://doi.org/10.1016/j.opelre.2017.04.002

Lu C.-L., Zhang L., Zhang Y.-W., Liu S.-Y., Mei Y. Electronic, optical properties, surface energies and work functions of Ag8SnS6: First-principles method. Chinese Physics B. 2015;24(1): 017501. https://doi.org/10.1088/1674-1056/24/1/017501

Boon-on P., Aragaw B. A., Lee C.-Y., Shi J.-B., Lee M.-W. Ag8SnS6: a new IR solar absorber material with a near optimal bandgap. RSC Advances. 2018;8(69): 39470–39476. https://doi.org/10.1039/c8ra08734b

Brammertz G., Vermang B., ElAnzeery H., Sahayaraj S., Ranjbar, S., Meuris M., Poortmans J. Fabrication and characterization of ternary Cu8SiS6 and Cu8SiSe6 thin film layers for optoelectronic applications. Thin Solid Films.

;616: 649–654. https://doi.org/10.1016/j.tsf.2016.09.049

Acharya S., Pandey J., Soni A. Enhancement of power factor for inherently poor thermal conductor Ag8GeSe6 by replacing Ge with Sn. ACS Applied Energy Materials. 2019;2(1): 654–660. https://doi.org/10.1021/acsaem.8b01660

Tim B., Riley H., Bjoern W., ... Wolfgang G. Z. Considering the role of ion transport in diffusondominated thermal conductivity. Advanced Energy Materials. 2022;12: 2200717. https://doi.org/10.1002/aenm.202200717

Hull S., Berastegui P., Grippa A. Ag+ diffusion within the rock-salt structured superionic conductor Ag4Sn3S8. Journal of Physics: Condensed Matter. 2005;17(7): 1067–1084. https://doi.org/10.1088/0953-8984/17/7/002

Heep B. K., Weldert K. S., Krysiak Y., … Tremel W. High electron mobility and disorder induced by silver ion migration lead to good thermoelectric performance in the argyrodite Ag8SiSe6. Chemistry of Materials. 2017;29(11): 4833–4839. https://doi.org/10.1021/acs.chemmater.7b00767

Boucher F., Evain M., Brec R. Distribution and ionic diffusion path of silver in g-Ag8GeTe6: A temperature dependent anharmonic single crystal structure study. Journal of Solid State Chemistry. 1993;107(2): 332–346. https://doi.org/10.1006/jssc.1993.1356

Sardarly R. M., Ashirov G. M., Mashadiyeva L. F., ... Babanly M. B. Ionic conductivity of the Ag8GeSe6 compound. Modern Physics Letters B. 2023;36(32): 2250171. https://doi.org/10.1142/S0217984922501718

West D. R. F. Ternary phase diagrams in materias science. 3rd edition. CRC Press; 2019. 236 p.

Saka Hiroyasu. Introduction to phase diagrams in materials science and engineering. World Scientific Publishing Company; 2020. 188 p. https://doi.org/10.1142/11368

Babanly M. B., Mashadiyeva L. F., Babanly D. M., Imamaliyeva S. Z., Taghiyev D. B., Yusibov Y. A. Some issues of complex investigation of the phase equilibria and thermodynamic properties of the ternary chalcogenide systems by the EMF method. Russian Journal of Inorganic Chemistry. 2019;64(13): 1649–1671. https://doi.org/10.1134/s0036023619130035

Imamaliyeva S. Z., Babanly D. M., Tagiev D. B., Babanly M. B. Physicochemical aspects of development of multicomponent chalcogenide phases having the Tl5Te3 structure: A Review. Russian Journal of Inorganic Chemistry. 2018;63(13): 1703–1730. https://doi.org/10.1134/s0036023618130041

Mashadieva L. F., Alieva Z. M., Mirzoeva R. D. Yusibov Yu. A. A., Shevel’kov V. , Babanly M. B. Phase equilibria in the Cu2Se–GeSe2–SnSe2 system. Journal of Inorganic Chemistry. 2022;67: 670–682. https://doi.org/10.1134/S0036023622050126

Alverdiyev I. J., Aliev Z. S., Bagheri S. M., Mashadiyeva L. F., Yusibov Y. A., Babanly M. B. Study of the 2Cu2S+GeSe2 ↔ Cu2Se+GeS2 reciprocal system and thermodynamic properties of the Cu8GeS6-xSex solid solutions. Journal of Alloys and Compounds. 2017;691: 255–262. https://doi.org/10.1016/j.jallcom.2016.08.251

Alverdiev I. J., Bagheri S. M., Aliyeva Z. M., Yusibov Y. A., Babanly M. B. Phase equilibria in the Ag2Se–GeSe2–SnSe2 system and thermodynamic properties of Ag8Ge1–x SnxSe6 solid solutions. Inorganic Materials. 2017;53(8), 786–796. https://doi.org/10.1134/s0020168517080027

Aliyeva Z. M., Bagheri S. M., Aliev Z. S., Alverdiyev I. J., Yusibov Y. A., Babanly M. B. The phase equilibria in the Ag2S–Ag8GeS6–Ag8SnS6 system. Journal of Alloys and Compounds.2014;611: 395–400. https://doi.org/10.1016/j.jallcom.2014.05.112

Bagheri S.M., Imamaliyev a S . Z . , Mashadiyeva L. F., Babanly M. B. Phase equilibria in the Ag8SnS6-

Ag8SnSe6 system. International Journal of Advanced Scientic and technical Research (India). 2014;4(2): 291–296.

Bayramova U. R., Poladova A. N., Mashadiyeva L. F. Synthesis and X-RAY study of the Cu8Ge(1–Х)SiХS6 solid solutions. New Materials, Compounds & Applications. 2022;6(3): 276–281.

Alieva Z. M., Bagkheri S. M., Alverdiev I. J., Yusibov Y. A., Babanly M. B. Phase equilibria in the pseudoternary system Ag2Se–Ag8GeSe6–Ag8SnSe6. Inorganic Materials. 2014;50(10): 981–986. https://doi.org/10.1134/s002016851410001x

Ashirov G. M. Phase equilibria in the Ag8SiTe6– Ag8GeTe6 system. Azerbaijan Chemical Journal. 2022;1: 89–93. https://doi.org/10.32737/0005-2531-2022-1-89-93

Olekseyuk I. D., Kogut Y. M., Fedorchuk A. O., Piskach L. V., Gorgut G. P., Parasyuk O. V. The Ag2S– GeS2 system and Ag2GeS3 crystal structure. Naukovyi visnyk Volyns’koho Natsional’noho Universytetu im. Lesi Ukrainky. Neorhanichna Khimiia. 2010;16: 25–33.

Venkatraman M., Blachnik R., Schlieper A. The phase diagrams of M2X-SiX2 (M is Cu, Ag; X is S, Se). Thermochimica Acta. 1995;249: 13–20. https://doi.org/10.1016/0040-6031(95)90666-5

Mikolaichuk A. G., Moroz N. V. T-x diagram of the Ag-Ge-S system in the Ag-Ge-GeS2-Ag8GeS6-Ag region: The glassy crystalline state of alloys. Russian Journal of Inorganic Chemistry. 2010;55(1): 87–92. https://doi.org/10.1134/S0036023610010171

Krebs B., Mandt J. Zur Kenntnis des argyrodit- strukturtyps: die kristallstruktur von Ag8SiS6 / The argyrodite structure type : The crystal structure of Ag8SiS6. Zeitschrift Für Naturforschung B. 1977; 32(4): 373–379. https://doi.org/10.1515/znb-1977-0404

Eulenberger G. Die kristallstruktur der tieftemperaturmodifikation von Ag8GeS6 – synthetischer argyrodit. Monatshefto für Chemie. 1977;108: 901–913. https://doi.org/10.1007/BF00898056

Gorochov O. Les composés Ag8MX6 (M= Si, Ge, Sn et X= S, Se, Te). Bull. Soc. Сhim. France. 1968;6: 2263–2275

Published
2023-05-29
How to Cite
Ashirov, G. M., Babanly, K. N., Mashadiyeva, L. F., Yusibov, Y. A., & Babanly, M. B. (2023). Phase equilibra in the Ag2S–Ag8GeS6–Ag8SiS6 system and some properties of solid solutions. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 25(2), 292-301. https://doi.org/10.17308/kcmf.2023.25/11168
Section
Original articles