Фазовые равновесия в системе Ag2S–Ag8GeS6–Ag8SiS6 и некоторые свойства твердых растворов
Аннотация
Фазовые равновесия в системе Ag2S–Ag8SiS6–Ag8GeS6 исследованы методами дифференциального термического анализа и рентгенофазового анализа. Построена диаграмма состояния граничного разреза Ag8SiS6 – Ag8GeS6, а также проекция поверхности ликвидуса, изотермическое сечение фазовой диаграммы при 300 К и некоторые политермические разрезы исследуемой системы.
Установлено, что в системе Ag8SiS6–Ag8GeS6 образуются непрерывные ряды твердых растворов между обеими кристаллическими модификациями исходных соединений. Поверхность ликвидуса системы Ag2S–Ag8SiS6–Ag8GeS6 состоит из двух полей, отвечающих первичной кристаллизации высокотемпературных модификаций HT-Ag8Si1-xGexS6 и HT-Ag 2S. На основании данных рентгенофазового анализа были рассчитаны параметры кристаллической решетки для обеих модификаций твердых растворов. Концентрационная зависимость параметров решетки
подчиняется правилу Вегарда.
Полученные новые фазы представляют интерес как экологически безопасные материалы с термоэлектрическими свойствами и смешанной ионно-электронной проводимостью.
Скачивания
Литература
Sanghoon X. L., Tengfei L. J., Zhang L. Y. Chalcogenides: From 3D to 2D and beyond. Elsevier; 2019. 398 p.
Ahluwalia G. K. Applications of chalcogenides: S, Se, and Te. Springer; 2016. 461 p.
Fujikane M., Kurosaki K., Muta H., Yamanaka S.. Thermoelectric properties of a- and b-Ag2Te. Journal of Alloys and Compounds. 2005;393(1-2): 299–301. https://doi.org/10.1016/j.jallcom.2004.10.002
Schwarzmüller S., Souchay D., Günther D., ... Oeckler O. Argyrodite-type Cu8GeSe6-x Te x(0 ≤ x ≤ 2): temperature-dependent crystal structure and thermoelectric properties. Zeitschrift für anorganische und allgemeine Chemie. 2018;644(24): 1915–1922. https://doi.org/10.1002/zaac.201800453
Acharya S., Soni A. High thermoelectric power factor in p-type Cu8GeSe6. DAE Solid State Physics Symposium 2018. 2019;2115(1): 1–3. https://doi.org/10.1063/1.5113463
Li W., Lin S., Ge B., Yang J., Zhang W., Pei Y. Low sound velocity contributing to the high thermoelectric performance of Ag8SnSe6. Advanced Science. 2016;3(11): 1600196. https://doi.org/10.1002/advs.201600196
Ghrib T., Al-Otaibi A. L., Almessiere M. A., Assaker I. B., Chtourou R. High thermoelectric figure of merit of Ag8SnS6 component prepared by electrodeposition technique. Chinese Physics Letters. 2015;32(12: 127402. https://doi.org/10.1088/0256-307x/32/12/127402
Jin M., Lin S., Li W., … Pei Y. Fabrication and thermoelectric properties of single-crystal argyrodite Ag8SnSe6. Chemistry of Materials. 2019;31(7): 2603–2610. https://doi.org/10.1021/acs.chemmater.9b00393
Shen X., Yang C.-C., Liu Y., Wang G., Tan H., Tung Y.-H., Zhou X.. High-temperature structural and thermoelectric study of argyrodite Ag8GeSe6. ACS Applied Materials & Interfaces. 2018;11(2): 2168–2176. https://doi.org/10.1021/acsami.8b19819
Charoenphakdee A., Kurosaki K., Muta H., Uno M., Yamanaka S. Ag8SiTe6: A new thermoelectric material with low thermal conductivity. Japanese Journal of Applied Physics. 2009;48(1): 01160–01169. https://doi.org/10.1143/jjap.48.011603
Jiang Q., Li S., Luo Y., Xin J., Li S., Li W., Yang J. Ecofriendly highly robust Ag8SiSe6-based thermoelectric composites with excellent performance near room temperature. ACS Applied Materials & Interfaces. 2020;12(49): 54653–54661. https://doi.org/10.1021/acsami.0c15877
Fujikane M., Kurosaki K., Muta H., Yamanaka S. Thermoelectric properties of Ag8GeTe6. Journal of Alloys and Compounds. 2005;396(1-2): 280–282. https://doi.org/10.1016/j.jallcom.2004.12.038
Semkiv I., Ilchuk H., Pawlowski M., Kusnezh V. Ag8SnSe6 argyrodite synthesis and optical properties. Opto-Electronics Review. 2017;25(1): 37–40. https://doi.org/10.1016/j.opelre.2017.04.002
Lu C.-L., Zhang L., Zhang Y.-W., Liu S.-Y., Mei Y. Electronic, optical properties, surface energies and work functions of Ag8SnS6: First-principles method. Chinese Physics B. 2015;24(1): 017501. https://doi.org/10.1088/1674-1056/24/1/017501
Boon-on P., Aragaw B. A., Lee C.-Y., Shi J.-B., Lee M.-W. Ag8SnS6: a new IR solar absorber material with a near optimal bandgap. RSC Advances. 2018;8(69): 39470–39476. https://doi.org/10.1039/c8ra08734b
Brammertz G., Vermang B., ElAnzeery H., Sahayaraj S., Ranjbar, S., Meuris M., Poortmans J. Fabrication and characterization of ternary Cu8SiS6 and Cu8SiSe6 thin film layers for optoelectronic applications. Thin Solid Films.
;616: 649–654. https://doi.org/10.1016/j.tsf.2016.09.049
Acharya S., Pandey J., Soni A. Enhancement of power factor for inherently poor thermal conductor Ag8GeSe6 by replacing Ge with Sn. ACS Applied Energy Materials. 2019;2(1): 654–660. https://doi.org/10.1021/acsaem.8b01660
Tim B., Riley H., Bjoern W., ... Wolfgang G. Z. Considering the role of ion transport in diffusondominated thermal conductivity. Advanced Energy Materials. 2022;12: 2200717. https://doi.org/10.1002/aenm.202200717
Hull S., Berastegui P., Grippa A. Ag+ diffusion within the rock-salt structured superionic conductor Ag4Sn3S8. Journal of Physics: Condensed Matter. 2005;17(7): 1067–1084. https://doi.org/10.1088/0953-8984/17/7/002
Heep B. K., Weldert K. S., Krysiak Y., … Tremel W. High electron mobility and disorder induced by silver ion migration lead to good thermoelectric performance in the argyrodite Ag8SiSe6. Chemistry of Materials. 2017;29(11): 4833–4839. https://doi.org/10.1021/acs.chemmater.7b00767
Boucher F., Evain M., Brec R. Distribution and ionic diffusion path of silver in g-Ag8GeTe6: A temperature dependent anharmonic single crystal structure study. Journal of Solid State Chemistry. 1993;107(2): 332–346. https://doi.org/10.1006/jssc.1993.1356
Sardarly R. M., Ashirov G. M., Mashadiyeva L. F., ... Babanly M. B. Ionic conductivity of the Ag8GeSe6 compound. Modern Physics Letters B. 2023;36(32): 2250171. https://doi.org/10.1142/S0217984922501718
West D. R. F. Ternary phase diagrams in materias science. 3rd edition. CRC Press; 2019. 236 p.
Saka Hiroyasu. Introduction to phase diagrams in materials science and engineering. World Scientific Publishing Company; 2020. 188 p. https://doi.org/10.1142/11368
Babanly M. B., Mashadiyeva L. F., Babanly D. M., Imamaliyeva S. Z., Taghiyev D. B., Yusibov Y. A. Some issues of complex investigation of the phase equilibria and thermodynamic properties of the ternary chalcogenide systems by the EMF method. Russian Journal of Inorganic Chemistry. 2019;64(13): 1649–1671. https://doi.org/10.1134/s0036023619130035
Imamaliyeva S. Z., Babanly D. M., Tagiev D. B., Babanly M. B. Physicochemical aspects of development of multicomponent chalcogenide phases having the Tl5Te3 structure: A Review. Russian Journal of Inorganic Chemistry. 2018;63(13): 1703–1730. https://doi.org/10.1134/s0036023618130041
Mashadieva L. F., Alieva Z. M., Mirzoeva R. D. Yusibov Yu. A. A., Shevel’kov V. , Babanly M. B. Phase equilibria in the Cu2Se–GeSe2–SnSe2 system. Journal of Inorganic Chemistry. 2022;67: 670–682. https://doi.org/10.1134/S0036023622050126
Alverdiyev I. J., Aliev Z. S., Bagheri S. M., Mashadiyeva L. F., Yusibov Y. A., Babanly M. B. Study of the 2Cu2S+GeSe2 ↔ Cu2Se+GeS2 reciprocal system and thermodynamic properties of the Cu8GeS6-xSex solid solutions. Journal of Alloys and Compounds. 2017;691: 255–262. https://doi.org/10.1016/j.jallcom.2016.08.251
Alverdiev I. J., Bagheri S. M., Aliyeva Z. M., Yusibov Y. A., Babanly M. B. Phase equilibria in the Ag2Se–GeSe2–SnSe2 system and thermodynamic properties of Ag8Ge1–x SnxSe6 solid solutions. Inorganic Materials. 2017;53(8), 786–796. https://doi.org/10.1134/s0020168517080027
Aliyeva Z. M., Bagheri S. M., Aliev Z. S., Alverdiyev I. J., Yusibov Y. A., Babanly M. B. The phase equilibria in the Ag2S–Ag8GeS6–Ag8SnS6 system. Journal of Alloys and Compounds.2014;611: 395–400. https://doi.org/10.1016/j.jallcom.2014.05.112
Bagheri S.M., Imamaliyev a S . Z . , Mashadiyeva L. F., Babanly M. B. Phase equilibria in the Ag8SnS6-
Ag8SnSe6 system. International Journal of Advanced Scientic and technical Research (India). 2014;4(2): 291–296.
Bayramova U. R., Poladova A. N., Mashadiyeva L. F. Synthesis and X-RAY study of the Cu8Ge(1–Х)SiХS6 solid solutions. New Materials, Compounds & Applications. 2022;6(3): 276–281.
Alieva Z. M., Bagkheri S. M., Alverdiev I. J., Yusibov Y. A., Babanly M. B. Phase equilibria in the pseudoternary system Ag2Se–Ag8GeSe6–Ag8SnSe6. Inorganic Materials. 2014;50(10): 981–986. https://doi.org/10.1134/s002016851410001x
Ashirov G. M. Phase equilibria in the Ag8SiTe6– Ag8GeTe6 system. Azerbaijan Chemical Journal. 2022;1: 89–93. https://doi.org/10.32737/0005-2531-2022-1-89-93
Olekseyuk I. D., Kogut Y. M., Fedorchuk A. O., Piskach L. V., Gorgut G. P., Parasyuk O. V. The Ag2S– GeS2 system and Ag2GeS3 crystal structure. Naukovyi visnyk Volyns’koho Natsional’noho Universytetu im. Lesi Ukrainky. Neorhanichna Khimiia. 2010;16: 25–33.
Venkatraman M., Blachnik R., Schlieper A. The phase diagrams of M2X-SiX2 (M is Cu, Ag; X is S, Se). Thermochimica Acta. 1995;249: 13–20. https://doi.org/10.1016/0040-6031(95)90666-5
Mikolaichuk A. G., Moroz N. V. T-x diagram of the Ag-Ge-S system in the Ag-Ge-GeS2-Ag8GeS6-Ag region: The glassy crystalline state of alloys. Russian Journal of Inorganic Chemistry. 2010;55(1): 87–92. https://doi.org/10.1134/S0036023610010171
Krebs B., Mandt J. Zur Kenntnis des argyrodit- strukturtyps: die kristallstruktur von Ag8SiS6 / The argyrodite structure type : The crystal structure of Ag8SiS6. Zeitschrift Für Naturforschung B. 1977; 32(4): 373–379. https://doi.org/10.1515/znb-1977-0404
Eulenberger G. Die kristallstruktur der tieftemperaturmodifikation von Ag8GeS6 – synthetischer argyrodit. Monatshefto für Chemie. 1977;108: 901–913. https://doi.org/10.1007/BF00898056
Gorochov O. Les composés Ag8MX6 (M= Si, Ge, Sn et X= S, Se, Te). Bull. Soc. Сhim. France. 1968;6: 2263–2275
Copyright (c) 2023 Конденсированные среды и межфазные границы
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.