Zirconium dioxide. Review

Keywords: Fianite, Baddeleyite, Zircon, Ceramics, Solid solutions, Oxides of rare earth elements, Phase diagrams, Inert matrix nuclear fuel


A review of zirconium dioxide or zirconia ZrO2 is presented. The finding of zirconium compounds in nature, the physical and chemical properties of ZrO2 are given, the polymorphism of zirconium oxide, and the phase diagrams of systems with its participation are considered. The areas of application of zirconia compounds are highlighted: automotive industry, electronics industry, energy and industrial ecology, equipment manufacturing and mechanical engineering the production of zirconium-based refractories, ceramics, enamels, glass, superhard materials, applications in medicine, nuclear energetics, and many others areas of human activity. Cubic modification of zirconium dioxide, stabilized by oxides of rare earth elements,
is a jewelry stone (fianite). Partially stabilized zirconium dioxide is a versatile structural material with very high resistance to crack propagation. Solid solutions of REE oxides, especially scandium, have a high oxygen conductivity, which is used in sensors for measuring the partial pressure of oxygen and in fuel cells. Attention is paid to heat-resistant oxide ceramic materials with low thermal conductivity used in the quality of heat-resistant coatings. Considerable attention was paid to the second most important mineral of zirconia - baddeleyite (ZrO2). Baddeleyite is widely used in the production of refractory materials. It is mined for the production of metallic zirconium. The achievements of Soviet and Russian scientists in the
development of technologies for the production of fianite and artificial baddeleyite are presented.


Download data is not yet available.

Author Biographies

Pavel P. Fedorov, Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova str., GSP-1, Moscow 119991, Russian Federation

DSc in Chemistry, Professor, Chief
Researcher of Prokhorov General Physics Institute of
the Russian Academy of Sciences, Moscow, Russian
Federation; e-mail: ppfedorov@yandex.ru

Evgeniya G. Yarotskaya, Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova str., GSP-1, Moscow 119991, Russian Federation

PhD in Chemistry,
Prokhorov General Physics Institute of the Russian
Academy of Sciences, Moscow, Russian Federation;
e-mail: yar461@yandex.ru


Sabbarao E. C. Zirconia - an overview. In: Proc. First Int Conf.: Science and Technology of Zirconia. Cleveland: Ohio; 1981. P. 1–24.

Atterer M., Balters H., Banse H., et. al. Zirconium. Gmelin Handbook of Inorganic Chemistry. Teil 42. Berlin: Springer; 1958.

Blumental W. B. The chemical behavior of zirconium. N.-Y.: Princeton, D. Van Nostrand Comp., Inc., N.J.; 1958.

Korovin S. S., Zimina G. V., Reznik A. M., Bukin V. I., Kornyushko V. F. / Ed. Korovin S. S. Redkie i rasseyannye elementy. Khimiya i tekhnologiya. T. 1. [Rare and scattered elements. Chemistry and technology. Vol. 1]. Moscow: MISIS publ.; 1996. 376 p. (In Russ.)

Rakov E. G. Tsirkonii. Khimicheskaya entsiklopediya v 5 t. [Zirconium. Chemical encyclopedia in 5 volumes. Zefirov N. S. (ed.)]. Moscow: Bol’shaya Rossiiskaya entsiklopediya Publ.; 1998(5). p. 384–783. (In Russ.)

Nielsen R. Zirconium and zirconium compounds. Weinheim Germany: Wiley-VCH; 2000. https://doi.org/10.1002/14356007.a28_543.pub2

Oksidy titana, tseriya, tsirkoniya, ittriya, alyuminiya. Svoistva, primenenie i metody polucheniya [Oxides of titanium, cerium, zirconium, yttrium, aluminum. Properties, application and methods of obtaining]. Novosibirsk: Izd-vo SO RAN Publ.; 2010. 246 p. (In Russ.)

Zhigachev A. O., Golovin Yu. I., Umrikhin A. V., Korenkov V. V., Tyurin A. I., Rodaev V. V., D’yachek T. A. Keramicheskie materialy na osnove dioksida tsirkoniya [Ceramic materials based on zirconium dioxide]. Golovin Yu. I. M.(ed.). Moscow: Tekhnosfera publ.; 2018. 357 p. (In Russ.)

Osiko V. V., Borik M. A., Lomonova E. E. Cruciblefree methods of growing oxide crystals from the melt. Annual Review of Materials Science. 1987;17: 101–122. https://doi.org/10.1146/annurev.ms.17.080187.000533

Garvie R. C., Hannink R. H. J., Pascoe R. T. Ceramic Steel? Nature. 1975;258(5537): 703–704. https://doi.org/10.1038/258703a0

Osiko V. V., Borik M. A., Lomonova E. E. Synthesis of refractory materials by skull melting. In: Springer Handbook of Crystal Growth. N.Y.: Springer; 2010. p. 433–477. https://doi.org/10.1007/978-3-540-74761-1_14

Stevens R. Engineering properties of zirconia. In: Engineered Materials. Handbook, ASM International,

Ceramics and Glasses. 1991;4: 775–786.

Bocanegra-Bernal M. H., de la Torre S. D. Phase transitions in zirconium dioxide and related materials for high performance engineering ceramics. Journal of Materials Science. 2002;37(23): 4947–4971. https://doi.org/10.1023/a:1021099308957

Boch P., Niepce J. C. Ceramic materials: processes, properties and applications. (eds.) ISTE Ltd; 2007. 573 p. https://doi.org/10.1002/9780470612415

Geodakyan D. A., Kostanyan A. K., Geokchyan O. K., Geodakyan K. D. Zirconium dioxide heat-resistant compositions. Refractories and Technicals Ceramics. 2010;6: 11–16. Available at: https://www.elibrary.ru/item.asp?id=15483557 (In Russ., abstract in Eng.)

Kablov E. N, Grashchenkov D. V., Isaeva N. V., Solntsev S. S. Perspektivnye vysokotemperaturnye keramicheskie kompozitsionnye materialy [Promising high-temperature ceramic composite materials]. Rossiiskii khimicheskii zhurnal. 2010;54(1): 20–24. Available at: https://w w w.elibrar y.ru/item.asp?id=14307270 (In Russ.)

Kablov E. N. Strategical areas of developing materials and their processing for the period up to 2030. Aviation Materials and Technologies. 2012;S: 7–17. Available at: https://elibrary.ru/item.asp?id=18084815 (In Russ., abstract in Eng.)

Golovin Yu. I., Korenkov V. V., Razlivalova S. S., Rodaev V. V. Physicomechanical properties of porous zirconia ceramics. Russian Metallurgy (Metally). 2018;10: 961–967. https://doi.org/10.1134/s0036029518100063

Primachenko V. V. Martynenko V. V., Szulik I. G. Kushchenko I. A. Vysokoogneupornye tigli iz tabilizirovannogo dioksida tsirkoniya dlya induktsionnoi plavki metallov platinovoi gruppy, izgotovlennye metodom vibrolit’ya [Highly refractory crucibles made of stabilized zirconium dioxide for induction melting of platinum group metals, manufactured by vibrocasting] Litiyo i Metallurgiya (Foundry Production and Metallurgy) 2012;3(66): 166-168. Available at: https://www.elibrary.ru/item.asp?id=21801425 (In Russ.)

Zimichev A. M., Solovjeva E. P. Zirconia fiber high temperature application (Review). Aviation Materials and Technologies. 2014;3: 55–61. Available at: https://www.elibrary.ru/item.asp?id=21875161 (In Russ., abstract in Eng.)

Akishin A. I. Effects of space conditions on materials. N-Y.: Nova Science Publ.; 2001. 199 p.

Kelly J. R., Denry I. Stabilized zirconia as a structural ceramics: An overview. Dental Materials. 2008;24(3): 289–298. https://doi.org/10.1016/j.dental.2007.05.005

Manicone P. F., Iommetti P. R., Raffaelli L. An overview of zirconia ceramics: Basic properties and clinical applications. Journal of Dentistry. 2007;35(11): 819–826. https://doi.org/10.1016/j.jdent.2007.07.008

Goodenough J. B. Oxide-ion electrolytes. Annual Review of Materials Research. 2003;33(1): 91–1 2 8 . https://doi.org/10.1146/annurev.matsci.33.022802.091651

Kendall K. Progress in solid oxide fuel cell materials. International Materials Reviews. 2005;50(5): 257–264. https://doi.org/10.1179/174328005x41131

Fergus J. F. Electrolytes for solid oxide fuel cells. Journal of Power Sources. 2006;162(1): 30–40. https://doi.org/10.1016/j.jpowsour.2006.06.062

Fedorov P. P., Popov P. A. Printsip ekvivalentnosti istochnikov besporyadka i teploprovodnost’ tverdykh tel [The principle of equivalence of sources of disorder and the thermal conductivity of solids]. Nanosystems:

Physics, Chemistry, Mathematics. 2013;4(1):148–159. Available at: https://w w w.elibrar y.ru/item.asp?id=18964066 (In Russ.)

Wu J., Wei X., Padture N. P., Klemens P. G., Gell M., García E., Miranzo P., Osendi M. I. Low-thermal-conductivity rare-earth zirconates for potential thermal-barrier-coating applications. Journal of the American Ceramic Society. 2002;85(12): 3031-3035. https://doi.org/10.1111/j.1151-2916.2002.tb00574.x

Schulz U., Leyens C., Fritscher K., Peters M., Saruhan-Brings B., Lavigne O., Dorvaux J.-M., Poulain M., Mévrel R., Caliez M. Some recent trends in research and technology of advanced thermal barrier coatings. Aerospace Science and Technology. 2003;7(1): 73–80. https://doi.org/10.1016/s1270-9638(02)00003-2

Solntsev S. S. Erosion and moisture resistant thermoregulating coatings for thermal protection system of “Buran” reusable spaceship. Aviation Materials and Technologies. 2013;S1: 94–124. Available at: https://www.elibrary.ru/item.asp?id=20423927

Okovity V. A., Panteleenko F. I., Okovity V. V., Astashinsky V. M., Uglov V. V., Chimanskiy V. I., Cerenda N. N. Formation and investigation of plasma powder coatings made of oxide ceramics modified with high-energy effects. Science & Technique. 2018;17(5): 378–389. https://doi.org/10.21122/2227-1031-2018-17-5-378-389 (In Russ.)

Al’myasheva O. V., Vlasov E. A., Khabenskii V. B., Gusarov V. V. Thermal stability and catalytic properties of the composite amorphous Al2O3-nanocrystals ZrO2. Russian Journal of Applied Chemistry. 2009;82(2): 217–221. https://doi.org/10.1134/s1070427209020104

Artemov S. A., Borik M. A., Volkova T. V., Gerasimov M. V., Kulebyakin A. V., Lomonova E. E., Milovich F. O., Myzina V. A., Ryabochkina P. A., Tabachkova N. Y. Influence of growth and heat treatment conditions on lasing properties of ZrO2–Y2O3–Ho2O3 crystals. Optical Materials. 2020;99: 109611. https://doi.org/10.1016/j.optmat.2019.109611

Dresv yannikov A. F. , Petrova E. V. , Khayrullina A. I. Production technology of binary aluminum and zirconium oxide systems. Khimicheskaya Tekhnologiya. 2017;18(8): 367-376. Available at:https://www.elibrary.ru/item.asp?id=29867439 (In Russ., abstract in Eng.)

Dzyaz’ko Y. S., Belyakov V. N., Stefanyak N. V., Vasilyuk S. L. Anion-exchange properties of composite ceramic membranes containing hydrated zirconium dioxide. Russian Journal of Applied Chemistry. 2006;79(5): 769–773. https://doi.org/10.1134/s1070427206050132

Almjashev V. I., Barrachin M., Bechta S.V., Bottomley D., Defoort F., Fischer M., Gusarov V. V., Hellmann S., Khabensky V. B., Krushinov E. V., Lopukh D. B., Mezentseva L. P., Miassoedov A., Petrov Yu. B., Vitol S. A. Eutectic crystallization in the FeO1.5–UO2+x–ZrO2 system. Journal of Nuclear Materials. 2009;389(1): 52–56. https://doi.org/10.1016/j.jnucmat.2009.01.006

Shidenkenni T. Y. Formation of unstabilized and yttria stabilized ZrO2 fibers from a suspension of monodispersed ZrO2. Journal of the Ceramic Society of Japan. 2006;114(1331): 590–593. https://doi.org/10.2109/jcersj.114.590

Korenkov V. V., Rodaev V. V., Shuklinov A. V. Stolyarov R. A., Zhigachev A. O., Tyurin A. I., Lovtsov A. R., Razlivalova S. S. Synthesis and properties of multifunctional ceramic nano-fibers using electro-spun. Tambov University Reports. Series: Natural and Technical Sciences. 2013;18(6-2): 3156–3159. Available at: https://www.elibrary.ru/item.asp?id=21106136 (In Russ., abstract in Eng.)

Shabanova N. A., Popov V. V., Sarkisov P. D. Khimiya i tekhnologiya nanodispersnykh oksidov [Chemistry and technology of nanodispersed oxides]. Moscow: Akademkniga Publ.; 2006. 309 p. (In Russ.)

Ivanov Yu. F., Tumanov Yu. M., Dedov N. V., Khasanov O. L. Structure and phase composition of nanostructured powder on thebase of zirconium dioxide synthesized by plasmachemical method. Physics and Chemistry of Materials Treatment. 2012;5: 37–45. Available at: https://www.elibrary.ru/item.asp?id=18053701(In Russ., abstract in Eng.)

Pozhidaeva O. V., Korytkova E. N., Romanov D. P., Gusarov V. V. Formation ZrO2 nanocrystals in hydrothermal media of various chemical composition. Russian Journal of General Chemistry. 2002;72(6): 849–853. https://doi.org/10.1023/A:1020409702215

Al’myasheva O. V., Ugolkova V. L., Gusarov V. V. Thermochemical analysis of desorption and adsorption of water on the surface of zirconium dioxide nanoparticles. Russian Journal of Applied Chemistry. 2008;81(4): 609–613. https://doi.org/10.1134/s1070427208040071

Geologicheskii slovar’: v 2-kh tomakh [Geological Dictionary: in 2 vol.]. K. N. Paffengol’ts, et al. (eds.). Moscow: Nedra Publ.; 1978. (In Russ.)

Belov N. V. Kristallicheskaya struktura baddeleita (monoklinnoi ZrO2). Kristallografiya [Crystal structure of baddeleyite (monoclinic ZrO2). Crystallography]. 1960;5(3): 460–461. (In Russ.)

Smith D. K., Newkirk H. W. The crystal structure of baddelyite (monoclinic ZrO2) and its relation to the polymorphism of ZrO2. Acta Crystallographica. 1965;18(6): 983–991. https://doi.org/10.1107/s0365110x65002402

French R. H., Glass S. J., Ohuchi F. S., Xu Y.-N., Ching W. Y. Experimental and theoretical studies on the electronic structure and optical properties of three phases of ZrO2. Physical Review B. 1994;49(8): 5133–5142. https://doi.org/10.1103/physrevb.49.5133

Chen M. , Hallstedt B. , Gauckler L. J. Thermodynamic modeling of the ZrO2–YO1.5 system. Solid State Ionics. 2004;170(3-4): 255–274. https://doi.org/10.1016/j.ssi.2004.02.017

Haines J., Leger J.M., Atouf A. Crystal structure

and equation of state of cotunnite-type zirconia. Journal of the American Ceramic Society. 1995;78(2):

–448. https://doi.org/10.1111/j.1151-2916.1995.tb08822.x

Gorelov V. P. High-temperature phase transitions in ZrO2. Physics of the Solid State. 2019;61:1288–1293. https://doi.org/10.1134/S1063783419070096

Chevalier J., Gremillard L., Virkar A. V., Clarke D. R. The tetragonal monoclinic transformation in zirconia: lessons learned and future trends. Journal of the American Ceramic Society. 2009;92(9): 1901–1920. https://doi.org/10.1111/j.1551-2916.2009.03278.x

Ashraf S., Irfan M., Kim D., Jang J.-H., Han W.‑T., Jho Y.-D. Optical influence of annealing in nano and submicron-scale ZrO2 powders. Ceramics International. 2014;40(6): 8513–8518. https://doi.org/10.1016/j.ceramint.2014.01.063

Ivanov V. K., Kopitsa G. P., Baranchikov A. Ye., Sharp M., Pranzas K., Grigiriev S. V. Mesostructure, fractal properties and thermal decomposition of hydrouys zirconia and hafnia. Russian Journal of Inorganic Chemistry. 2009;54(15): 2091–2106. https://doi.org/10.1134/s0036023609140022

Al’myasheva O. V., Fedorov B. A., Smirnov A. V., Gusarov V. V. Razmer, morfologiya i struktura chastits nanoporoshka dioksida tsirkoniya, poluchennogo v gidrotermal’nykh usloviyakh [Size, morphology and structure of particles of zirconium dioxide nanopowder o btained und erhydrothermal conditions]. Nanosystems: Physics, Chemistry, Mathematics. 2010;1(1): 26–36. Available at: https://www.elibrary.ru/item.asp?id=15648758 (In Russ.)

Lyamina G. V., Ilela A. E., Kachaev A. A., Dalbanbai A., Kolosov P. V., Cheprasova M. Nanopowders of aluminum oxide and zirconium from solutions of their salts by spray drying. Butlerov Communications. 2013; 33 (2): 119–123. Available at: https://www.elibrary.ru/item. asp?id=18938977 (In Russ., abtract in Eng.)

Smorokov A. A., Kraydenko R. I. Poluchenie dioksida tsirkoniya s ispol’zovaniem ftoridov ammoniya [Obtaining zirconium dioxide using ammonium fluorides. Polzunovskiy Vestnik. 2017;3: 126–130. Available at: https://www.elibrary.ru/item.asp?id=30502289 (In Russ.)

Veselova V. O., Yurlov I. A., Ryabochkina P. A., Belova O. V., Dudkina T. D., Egorysheva A. V. Synthesis and luminescent properties of nanocrystalline (1–х) ZrO2–хEr2O3 (х = 0.015–0.5) solid solutions. Russian Journal of Inorganic Chemistry. 2020;65(9):1298–1303. https://doi.org/10.1134/s0036023620090211

Oliveira A. P., Torem M. L. Influence of some precipitin variables on thermal behavior of ZrO2–Y2O3 and ZrO2–CeO2 precipitated gels. Journal of Materials Science. 2000; 35: 667–672. https://doi.org/10.1023/a:1004796931837

Smirnov A. V., Fedorov B. A., Tomkovich M. V., Almyasheva O. V., Gusarov V. V. Nanochastitsy so stroeniem “yadro–obolochka”, formiruyushchiesya v sisteme ZrO2–Gd2O3–H2O v gidrotermal’nykh usloviyakh [Nanoparticles with a “core-shell” structure formed in the ZrO2–Gd2O3–H2O system in hydrothermal onditions].

Doklady Akademii Nauk. 2014; 456 (2): 171–173. https://doi.org/10.7868/s0869565214140138 (In Russ.)

Asadi S., Abdizadeh H., Vahidshad Y. Effect of crystalline size on the structure of copper doped zirconia nanoparticles synthesized via sol-gel. Journal of Nanostructures. 2012;2(2): 205–212. https://doi.org/10.7508/JNS.2012.02.008

Kicio H., Komameni S., Roy R. Preparation of La2Zr2O7 by sol-gel route. Journal of the American Ceramic Society. 1991;74(2): 422–424. https://doi.org/10.1111/j.1151-2916.1991.tb06899.x

Nandi C., Jain D., Grover V., Krishnan K., Banerjee J., Prakash A., Khan K. B., Tyagi A. K. ZrO2-NdO1.5 system: Investigations of phase relation and thermophysical properties. Materials & Design. 2017;121: 101–108. https://doi.org/10.1016/j.matdes.2017.02.030

Zhukov A. V., Min T., Chizhevskaya S. V., Merkushin A. O. The obtaining of zirconia nanopowders. Advances in Chemistry and Chemical Technology. 2013;27(6): 33–37. Available at: https://www.elibrary.ru/item.asp?id=20382880 (In Russ., abstract in Eng.)

Abdala P. M., Craievich A. F., Fantini M. C. A., Temperini M. L. A., Lamas D. G. Metastable phase diagram of nanocrystalline ZrO2–Sc2O3 solid solutions. The Journal of Physical Chemistry C. 2009;113(13): 18661–18666. https://doi.org/10.1021/jp904584e

Somiya Sh., Yashima M., Kakihana M., Yoshimura M. Revised phase diagram of the system ZrO2–CeO2 below 1400 C. Journal of the American Ceramic Society. 1983;66(7): 506–510.


Thomson J. B., Armstrong A. R., Bruce P. G. An oxygen-rich pyrochlore with fluorite composition. Journal of Solid State Chemistry. 1999;148(1): 56–62. https://doi.org/10.1006/jssc.1999.8347

Stubican V. S., Ray S. P. Phase equilibria and ordering in the system ZrO2–CaO. Journal of the American Ceramic Society. 1977;60(11-12): 534–537. https://doi.org/10.1111/j.1151-2916.1977.tb14100.x

Stubican V. S., Hink R. C., Ray S. P. Phase equilibria and ordering in the system ZrO2–Y2O3. Journal of the American Ceramic Society. 1978;61(1-2): 17–21. https://doi.org/10.1111/j.1151-2916.1978.tb09220.x

Degtyarev S. A., Voronin G. F. Raschet fazovoi diagrammy v sisteme ZrO2–Y2O3 [Calculation of the phase diagram in the ZrO2–Y2O3 system]. Russian Journal of Physical Chemistry A. 1987; 61(3): 617–622. 9 (In Russ.)

Du Y., Jin Z., Huang P. Thermodynamic assessment of the ZrO2-YO1.5 system. Journal of the American Ceramic Society. 1991;74(7): 1569–1577. https://doi.org/10.1111/j.1151-2916.1991.tb07142.x

Andrievskaya E. R. Fazovye ravnovesiya v sistemakh oksidov gafniya, tsirkoniya, ittriya s oksidami redkozemel’nykh elementov [Phase equilibria in systems of oxides of hafnium, zirconium, yttrium with oxides

of rare earth elements]. Kiev: Naukova Dumka Publ.; 2010. 471 p.

Yashima M., Kakihana M., Yoshimura M. Metastable-stable phase diagrams in the zirconiacontaining systems utilized in solid-oxide fuel cell application. Solid State Ionics. 1996;86-88: 1131–1149. https://doi.org/10.1016/0167-2738(96)00386-4

Borik M. A., Bredikhin S. I., Bublik V.T., et al. Structure and conductivity of yttria and scandia-doped zirconia crystals grown by skull melting. Journal of the American Ceramic Society. 2017;100(1-12): 5536–5547. https://doi.org/10.1111/jace.15074

Fujimori H., Yashima M., Kakihana M., Yoshimura M. Structural changes of scandia-doped zirconia solid solutions: Rietveld analysis and Raman scattering. Journal of the American Ceramic Society. 1998; 81(110): 2885–2893. https://doi.org/10.1111/j.1151-2916.1998.tb02710.x

Arachi Y. High-temperature structure of Sc2O3–doped ZrO2. Solid State Ionics. 2004;175(1-4): 119–121. https://doi.org/10.1016/j.ssi.2004.09.025

Liu Z.-G., Ouyang J.-H., Wang B.-H., Zhou Y., Li J. Preparation and thermophysical properties of NdxZr1–xO2–x/2 (x = 0.1, 0.2, 0.3, 0.4, 0.5) ceramics. Journal of Alloys and Compounds. 2008;466: 39–44. https://doi.org/10.1016/j.jallcom.2007.11.147

Pascual C., Duran P. Subsolidus Phase Equilibria and ordering in the system ZrO2–Y2O3. Journal of the American Ceramic Society. 1983;66(1): 23–28. https://doi.org/10.1111/j.1151-2916.1983.tb09961.x

Thornber M. R., Bevan D. J. M., Summerville E. Mixed oxides of the type MO2 fluorite-M2O3. V. Phase studies in the systems ZrO2–M2O3 (M = Sc,Yb, Er, Dy). Journal of Solid State Chemistry. 1970;1(3-4): 545–553. https://doi.org/10.1016/0022-4596(70)90140-4

Spiridonov F. M., Popova L. N., Popilskii R. Ya. On the phase relations and the electrical conductivity in the system ZrO2-Sc2O3. Solid State Ionics. 1970;2(3): 430–438. https://doi.org/10.1016/0022-4596(70)90102-7

Ruh R., Garrrett H. J., Domagala R. F., Patel V. A. The system zirconia-scandia. Journal of the American Ceramic Society. 1977;60(9-10): 399–403. https://doi.org/10.1111/j.1151-2916.1977.tb15521.x

Shevchenko A. V., Maister I. M., Lopato L. M. Vzaimodeistvie v sistemakh HfO2–Sc2O3 and ZrO2–Sc2O3 pri vysokikh temperaturakh [Interaction in the systems HfO2–Sc2O3 and ZrO2–Sc2O3 at high temperatures]. Izvestiya Akademii nauk SSSR. Neorganicheskie materialy (Inorganic Materials). 1987;23: 1320-1324. (In Russ.)

Zyrin A. V., Red’ko V. P., Lopato L. M. , Shevchenko A. V., Maister I. M., Zaitseva Z. A. Uporyadochennye fazy v sistemakh ZrO2–Sc2O3 i HfO2–Sc2O3 [Ordered phases in ZrO2–Sc2O3 and HfO2–Sc2O3 systems]. Izvestiya Akademii nauk SSSR. Neorganicheskie Mmaterialy (Inorganic Materials). 1987;23: 1325–1329. (In Russ.)

Sheu T.-S., Xu J., Tien T.-Y. Phase relationships in the ZrO2-Sc2O3 and ZrO2–In2O3 systems. Journal of the American Ceramic Society. 1993;76(8): 2027–2032. https://doi.org/10.1111/j.1151-2916.1993.tb08328.x

Hirano M., Kato E. Transformation of Sc2O3–doped tetragonal zirconia polycrystals by aging under hydrothermal conditions. Journal of Materials Science. 1999; 34(6): 1399–1405. https://doi.org/10.1023/A:1004583023044

Fujimori H., Yashima M., Kakihana M., Yoshimura M.. b-cubic phase transition of scandia-doped zirconia solid solution: Calorimetry, x-ray diffraction, and Raman scattering. Journal of Applied Physics. 2002;91(10): 6493–6498. https://doi.org/10.1063/1.1471576

Du K., Kim C.-H., Heuer A. H., Goettler R., Liu Zh. Structural evolution and electrical properties of Sc2O3 –stabilized ZrO2-aged at 850 C in air and wetforming gas ambient. Journal of the American Ceramic Society. 2008;91(5): 1626–1633. https://doi.org/10.1111/j.1551-2916.2007.02138.x

Borik M. A., Bredikhin S. I., Kulebyakin A. V., Kuritsyna I. E., Lomonova E. E., Milovich F. O., Myzina V. A., Osiko V. V., Panov V. A., Ryabochkina P. A., Seryakov S. V., Tabachkova N. Yu. Melt growth, structure and properties of (ZrO2)1–x(Sc2O3)x solid solution crystals. Journal of Crystal Growth. 2016;443: 54–61. https://doi.org/10.1016/j.jcrysgro.2016.03.004

Agarkov D. A., Borik M. A., Volkova T. V., Eliseeva G. A., Kulebyakin A. V., Larina N. A., Lomonova E. E., Myzina V. A., Ryabochkina P. A., Tabachkova N. Yu. Phase composition and local structure of scandia and yttria stabilized zirconia solid solution. Journal of Luminescence. 2020;222: 117170. https://doi.org/10.1016/j.jlumin.2020.117170

Guo X., Schober T. Water incorporation in tetragonal zirconia. Journal of the American Ceramic Society. 2004;87(4): 746–748. https://doi.org/10.1111/j.1551-2916.2004.00746.x

Serena S., Sainz M. A. de Aza S., Caballero A. Thermodynamic assessment of the system ZrO2–CaO–MgO using new experimental results: Calculation of the isoplethal section MgO·CaO–ZrO2. Journal of the European Ceramic Society. 2005;25(5): 681–694. https://doi.org/10.1016/j.jeurceramsoc.2004.02.011

Guo X. Property degradation of tetragonal zirconia induced by low-temperature defect reaction with water molecules. Chemistry of. Materials. 2004;16(21): 3988–3994. https://doi.org/10.1021/cm040167h

Fujimori H., Yashima M., Kakihana M., Yoshimura M. Beta-cubic phase transition of Scandia-doped zirconia solid solution calorimertry, X-ray diffraction, and Raman scattering. Journal of Applied Physics, 2002;91: 6493–6498. https://doi.org/10.1063/1.1471576

Hirano M., Kato E. Transformation of Sc2O3–doped tetragonal zirconia polycrystals by aging under hydrothermal conditions. Journal of Materials Science 1999;34: 1399–1405. https://doi.org/10.1023/A:1004583023044

Haering C., Roosen A., Schichl H., Schnoller M. Degradation of the electrical conductivity in stabilized zirconia system. Part. II: Scandia-stabilized zirconia. Solid State Ionics. 2005;176(3-4): 261–268. https://doi.org/10.1016/j.ssi.2004.07.039

Rouanet A. Contribution a l’etude des systems zircon-oxydes des lanthanides au voisinage fe la fusion. Rev. Int. Hautes et Refract. 1971;8: 161–180.

Noguchi T., Mizuno M., Yamada T. The liquidus curve of the ZrO2-Y2O3 system as measured by a solar furnace. Bull. Chem. Soc. Japan. 1970;43(8): 2614–2616. https://doi.org/10.1246/bcsj.43.2614

Almjashev V. I., Barrachin M., Bechta S. V., Bottomley D., Defoort F., Fischer M., Gusarov V. V., Hellmann S., Khabensky V. B., Lopukh D. B., Mezentseva L. P., Miassoedov A., Petrov Yu. B., Vitol S. A. Phase equilibria in the FeO1+x–UO2–ZrO2 system in the FeO1+x–enriched domain. Journal Nuclear Materials. 2010;400(2): 119–126. https://doi.org/10.1016/j.jnucmat.2010.02.020

Sakka Y., Oishi Y., Ando K. Zr-Hf interdiffusion in polycrystalline Y2O3 – (Zr+Hf)O2. Journal of Materials Science. 1982;17(11): 3101-3105. https://doi.org/10.1007/BF01203471

Sazonova L. V., Glushkova V. G., Krzhizhanovskaya V. A. Sintez tsirkonatov neodima i prazeodima [Synthesis of neodymium and praseodymium zirconates]. Iz vestiya Akademii nauk SSSR. Neorganicheskie materialy Inorganic Materials). 1990;26(9): 1630–1633. (In Russ.)

Duran P. The system erbia- zirconia. Journal American Ceramic Society. 1977;60(11-12): 510–513. https://doi.org/10.1111/j.1151-2916.1977.tb14095.x

Yashima M. , Ishizawa N. , Nama T. , Yoshimura M. Stable and metastable phase relationships in the system ZrO2–ErO1.5. Journal of the American Ceramic Society. 1991;74(3): 510–513.


Aleksandrov V. I., Voron’ko Yu. K., Ignat’ev B. V., Lomonova E. E., Osiko V. V., Sobol’ A. A. Issledovanie strukturnykh prevrashcheniei v tverdykh rastvorakh na sonove dvuokisi tsirkoniya i gafniya metodom kombinatsionnogo rasseyaniya seta [Investigation of structural transformations in solid solutions based on zirconium dioxide and hafnium by the method of Raman set scattering]. Physics of the Solid State. 1978;20(2): 528–534. (In Russ.)

Voronko Y. K., Sobol A. A., Shukshin V. E. Monoclinic-tetragonal phase transition in zirconium and hafnium dioxides: A high-temperature Raman scattering investigation. Physics of the Solid State. 2007;49: 1963–1968. https://doi.org/10.1134/S1063783407100253

Agarkov D. A., Borik M. A., Korableva G. M. et al. Effect of heat treatment on the thermal conductivity of single crystals of ZrO2-based solid solutions stabilized with scandium and yttrium oxides. Physics of the Solid State. 2020;62: 2357–2364 https://doi.org/10.1134/S1063783420120021

Vasilevskaya A., Almjasheva O. V., Gusarov V. V. Peculiarities of structural transformations in zirconia nanocrystals. Journal of Nanoparticle Research. 2016;18: 188. https://doi.org/10.1007/s11051-016-3494-y

Popov P. A., Solomennik V. D., Lomonova E. E. et al. Thermal conductivity of single-crystal ZrO2–Y2O3 solid solutions in the temperature range 50–300 K. Physics of the Solid State. 2012;54: 658–661. https://doi.org/10.1134/S1063783412030250

Borik M. A., Volkova T. V., Kulebyakin A. V. et al. Thermal conductivity of cubic ZrO2 single crystals stabilized with yttrium oxide. Physics of the Solid State. 2020;62: 235–239. https://doi.org/10.1134/S1063783420010072

Kuz’minov Yu. S., Lomonova E. G., Osiko V. V. Tugoplavkie materialy iz kholodnogo tiglya [Refractory materials from a cold crucible]. Moscow: Nauka Publ.; 2004. 372 p. (In Russ.)

Kornilov N. I., Solodova Yu. P. Yuvelirnye kamni [Jewelry stones]. Moscow: Nedra Publ.; 1986. 282 p. (In Russ.)

Golenko V. P., Polyanskii E. V., Yarotskaya E. G., Yarotskii V. G. Baddeleit i flyuorit. Sintez mineralov [Baddeleyite and fluorite. Synthesis of minerals.]. Aleksandrov: VNIISIMS Publ.; 2000(2). 136–141. (In Russ.)

Borik M. A., Lomonova E. E., Osiko V. V., Panov V. A., Porodnikov O. E., Vishnyakova M. A., Voron’ko Yu. K. Voronov V. V. Partially stabilized single crystals: growth from the melt and investigation of the properties. Journal of Crystal Growth. 2005;275(1‑2): e2173–e2179. https://doi.org/10.1016/j.jcrysgro.2004.11.244

King A. G., Yavorsky P. J. Stress relief mechanisms in magnesia and yttria-stabilizied zirconia. Journal of the American Ceramic Society. 1968; 51(1): 38–42. https://doi.org/10.1111/j.1151-2916.1968.tb11825.x

Agarkova E. A., Borik M. A., Kulebyakin A. V. et al. Structural, mechanical, and transport properties of scandia and yttria partially stabilized zirconia crystals. Inorganic Materials. 2019;55: 748–753. https://doi.org/10.1134/S0020168519070021

Kuznetsov V. A., Sidorenko O. V. Kristallizatsiya ZrO2- HfO2 vgidrotermal’ny khusloviyakh [Crystallization of ZrO2-HfO2 under hydrothermal conditions]. Kristallografiya. 1968;13: 748–749. (In Russ.)

Vil’ke K.-T. Vyrashchivanie kristallov [Growing crystals]. Leningrad: Nedra Publ.; 1977. 600 p. (In Russ.)

Al’myasheva, O.V., Ugolkova, V.L. & Gusarov, V.V. Thermochemical analysis of desorption and adsorption of water on the surface of zirconium dioxide nanoparticles. Russian Journal of Applied Chemistry. 2008;81: 609. https://doi.org/10.1134/S1070427208040071

Almjasheva O. V., Denisova T. A. Water state in nanocrystals of zirconium dioxide prepared under hydrothermal conditions and its influence on structural transformations. Russian Journal of General Chemistry. 2017;87: 1–7. https://doi.org/10.1134/S1070363217010017

Golovin Yu. I., Farber B. Ya., Korenkov V. V., Tyurin A. I., Shuklinov A. V., Stolyarov R. A., Zhigachev A. O. Synthesis and physical- mechanical properties of stabilized zirconia ceramics prepared from baddeleyite. Tambov University Reports. Series Natural and Technical Sciences. 2012;17(3): 875–879. Available at: https://elibrary.ru/item.asp?id=17839540 (In Russ., abstract in Eng.)

Zhigachev A. O., Golovin Y. I. Nanostructured zirconia ceramic based on baddeleyite domestic raw. Nanotechnologies in Russia. 2017;12: 400–408. https://doi.org/10.1134/S1995078017040176

Scian A. N., Aglietti E. F., Caracoche M. C., Rivas P. C., Pasquevich A. F., Lopez Garcia A. R. Phase transformation in monoclinic zirconia caused by milling and subsequent annealing. Journal of the American Ceramic Society. 1994;77(6): 1525–1530. https://doi.org/10.1111/j.1151-2916.1994.tb09752.x

Degueldre C., Paratte J. M. Concepts for an inert matrix fuel, an overview. Journal of Nuclear Materials. 1999;274(1-2): 1–6. https://doi.org/10.1016/s0022-3115(99)00060-4

Pöml P., Konings R. J. M., Somers J., Wiss T., de Haas G. J. L. M., Klaassen F. C. Inert matrix fuel. In: Comprehensive Nuclear Materials. 2012;3: 237–256. https://doi.org/10.1016/b978-0-08-056033-5.00057-4

Degueldre C. Zirconia inert matrix for plutonium utilization and minor actinides disposition in reactors. Journal of Alloys and Compounds. 2007;444: 36–41. https://doi.org/10.1016/j.jallcom.2006.11.203

Ewing R. C., Weber W. J., Lian J. Nuclear waste disposal-pyrochlore (A2B2O7): Nuclear waste form for the immobilization of plutonium and “minor” actinides. Journal of Applied Physics. 2004;95(11): 5949–5971. https://doi.org/10.1063/1.1707213

Nästren C., Jardin R., Somers J., Walter M., Brendebach B. Actinide incorporation in a zirconia based yrochlore (Nd1.8An0.2)Zr2O7+x (An = Th, U, Np, Pu, Am). Journal of Solid State Chemistry. 2009;182: 1–7. https://doi.org/10.1016/j.jssc.2008.09.017

Huang Z., Li Q., Zhang Y., Duan J. Wang H., Tang Z., Yang Y., Qi J., Lu T. Densifications and mechanical properties of single phase Gd2Zr2O7 ceramic waste forms with improved TRPO waste load. Journal of the European Ceramic Society. 2020;40(13): 4613-4622.

Nandi C., Jain D., Grover V., Dawar R., Kaity S., Prakash A., Tyagi A. Zr0.70[Y1-xNdx]0.30O1.85 as a potential candidate for inert matrix fuel: Structural and thermophysical property investigations. Journal of Nuclear Materials. 2018;510: 178–186. https://doi.org/10.1016/j.jnucmat.2018.08.008

Tananaev I. V., Fedorov V. B., Morokhov I. D., Malyukova L. V. Osnovy fizikokhimii veshchestv v metastabil’nom ul’tradispersnom sostoyanii i perspektivy ikh ispol’zovaniya [Fundamentals of physical chemistry of substances in a metastable ultrafine state and prospects for their use]. Izvestiya Akademii nauk SSSR. Neorganicheskie materialy (Inorganic Materials). 1984;20(6): 1026–1033. (In Russ.)

Fedorov P. P. Heterovalent isomorphism and solid solutions with a variable number of ions in the unit cell. Russian Journal of Inorganic Chemistry. 2000;45: S268–S291. Available at: https://elibrary.ru/item.asp?id=13360696

Fedorov P. P., Sobolev B. P. Ob usloviyakh obrazovaniya maksimumov na krivykh plavleniya tverdykh rastvorov v solevykh sistemakh [On the conditions for the formation of maxima on the melting curves of solid solutions in salt systems]. Russian Journal of Inorganic Chemistry. 1979;24(4): (In Russ.)

Sobolev B. P. The rare earth trifluorides. Pt. 1. The high-temperature chemistry of the rare earth trifluorides.

Barcelona: Inst. d’estudies catalans; 2000. 520 p.

Kaminskii A. A., Agamalyan N. R., Denisenko G. A., Sarkisov S. E., Fedorov P. P. Spectroscopy and laser mission of disordered GdF3-CaF2:Nd3+ trigonal crystals. Physica Status Solidi (a). 1982;70(2): 397–406. http://dx.doi.org/10.1002/pssa.2210700206

Tsvetkov V. B., Proidakova V. Yu., Kuznetsov S. V., Subbotin K. A., Lis D. A., Yapryntsev A. D., Ivanov V. K., Fedorov P. P. Growth of Yb: Na2SO4 crystals and study of their spectral–luminescent characteristics.. Quantum Electronics. 2019;49(11): 1008-1011. https://doi.org/10.1070/qel17107

Fedorov P. P. Third law of thermodynamics as applied to phase diagrams. Russian Journal of Inorganic Chemistry. 2010;55: 1722–1739. https://doi.org/10.1134/S0036023610110100

Yin Y., Argent B. B. Phase diagrams and thermodynamics of the systems ZrO2–CaO and ZrO2–MgO. Journal of Phase Equilibria. 1993;14(4): 439–450. https://doi.org/10.1007/bf02671962

Wang K., Li Ch. H., Gao Y. H., Lu X. G., Ding W. Z. Thermodynamic reassessment of ZrO2-CaO system. Journal of the American Ceramic Society. 2009; 92 (5): 1098–1104. https://doi.org/10.1111/j.1551-2916.2009.02942.x

Jacobson N. S., Liu Z.-K., Kaufman L., Zhang F. Thermodynamic modeling of YO1.5–ZrO2 system. Journal of the American Ceramic Society. 2004;87(8): 1559–1566. https://doi.org/10.1111/j.1551-2916.2004.01559.x

Zinkevich M., Djurovic D., Aldinger F. Thermodynamic modeling of the cerium-oxygen system. Solid State Ionics. 2006;177(11-12): 989–1001. https://doi.org/10.1016/j.ssi.2006.02.044

Morozova L. V., Tikhonov P. A., Gushkova V. B. Fazovye sootnosheniya v sisteme ZrO2–In2O3, sintez i fiziko-khimicheskie svoistva tverdykh rastvorov [Phase relationships in the ZrO2–In2O3 system, synthesis and physicochemical properties of solid solutions]. Doklady of the USSR Academy of Sciences.183: 140-143. (In Russ) 139. Artamonova O. V., Al’myasheva O. V., Mittova I. Ya., Gusarov V. V. Spekanie nanoporoshkov i svoistva keramiki v sisteme ZrO2–In2O3 [Sintering of nanopowders and properties of ceramics in the ZrO2–In2O3 system]. Perspektivnye Materialy. 2009;9: 91–94. Available at: https://elibrary.ru/item.asp?id=11779849 (In Russ.)

Fedorov P. P. Nanotechnology and material science. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(3): 314–315. https://doi.org/10.17586/2220-8054-2020-11-3-314-315

How to Cite
Fedorov, P. P., & Yarotskaya, E. G. (2021). Zirconium dioxide. Review. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 23(2), 169-187. https://doi.org/10.17308/kcmf.2021.23/3427