Complex copper-based chalcogenides: a review of phase equilibria and thermodynamic properties
Abstract
Complex copper-based chalcogenides are among the most important functional materials in modern engineering and technology due to their diverse physical and physicochemical properties, environmental safety and availability. The development of new similar materials and the improvement of the applied characteristics of known compounds is largely associated with the use of approaches based on the physicochemical analysis and, in particular, the “composition-structure-property” relationship.
This review summarizes the available data on phase equilibria in ternary systems Cu-Tl(BIV, BV)-X (BIV-Si, Ge, Sn; BV-As, Sb, Bi; X-S, Se, Te) and the thermodynamic properties of their intermediate phases. Similar data are also considered for more complex systems forming solid solutions of various types of substitution based on known ternary copper chalcogenides. A significant part of the presented sets of mutually consistent data on phase equilibria and thermodynamic properties of the considered systems was obtained by our group over the past 10-15 years. Although these data cover only a small part of the systems described above, they provide great possibilities for manipulation of composition and structure, including entropic engineering strategies. The authors consider it extremely important to further develop fundamental research on phase equilibria and thermodynamic properties of complex copper chalcogenides and use their results widely in selecting alloy compositions for physical measurements
Downloads
References
Physical-chemical properties of semiconductor substances*. Reference-book. А. V. Novoselova, V. B. Lazarev (eds.). Moscow: Nauka Publ., 1976. 339 p. (In Russ.)
Abrikosov N. Kh., Bankina V. F., Poretskaya L. V., Skudnova E. V., Chizhevskaya S. N. Semiconductor chalcogenides and their base alloys*. Moscow: Nauka Publ., 1974. 220 p. (In Russ.)
Aven M., Prener J. S. Physics and chemistry of II-VI compounds. North-Holland Publishing Co; First Edition. 1967. 844 p.
Lazarev V. B., Berul S. I., Salov A. V. Ternary semiconductor compounds in AI-BV-CVI systems*. Moscow: Nauka Publ.; 1982. 150 p. (In Russ.)
Ahluwalia G. K. (ed.). Applications of chalcogenides: S, Se, and Te. Springer, 2016. 461p.
Woodrow P. Chalcogenides: advances in research and applications. New York: Nova Science Publishers, 2018. 111 p.
Scheer R., Schock H. W. Chalcogenide photovoltaics: physics, technologies, and thin film devices. Weinheim: Wiley-VCH, 2011. 384 p.
Alonso-Vante N. Chalcogenide materials for energy conversion: pathways to oxygen and hydrogen reactions. New York: Springer; 2018. 234 p. https://doi.org/10.1007/978-3-319-89612-0
Khan M. M. Chalcogenide-based nanomaterials as photocatalysts. Amsterdam: Elsevier, 2021. 376 p.
Hasan M. Z., Kane C. L. Colloquium: topological insulators. Reviews of Modern Physics. 2010;82: 3045–3067. https://doi.org/10.1103/RevModPhys.82.3045
Hagmann A. J. Chalcogenide topological insulators. In: Chalcogenide from 3D to 2D and beyond. Woodhead Publishing Series in Electronic and Optical Materials, 2020. p. 305–337. https://doi.org/10.1016/b978-0-08-102687-8.00015-4
Flammini R., Colonna S., Hogan C., … Ronci F. Evidence of b-antimonene at the Sb/Bi2Se3 interface. Nanotechnology. 2018;29(6): 065704. https://doi.org/10.1088/1361-6528/aaa2c4
Tian W.,Yu W.,Shi J., Wang Y. The property, preparation and application of topological insulators: a review. Material. 2017;10(7): 814. https://doi.org/10.3390/ma10070814
Babanly M. B., Chulkov E. V., Aliev Z. S., Shevel’kov A. V., Amiraslanov I. R. Phase diagrams in materials science of topological insulators based on metal chalkogenides, Russian Journal of Inorganic Chemistry. 2017;62(13): 1703–1729. https://doi.org/10.1134/S0036023617130034
Pacile D., Eremeev S. V., Caputo M., … Papagno M. Deep insight into the electronic structure of ternary topological insulators: A comparative study of PbBi4Te7 and PbBi6Te10. Physica Status Solidi (RRL). 2018;12(12): 1800341-8. https://doi.org/10.1002/pssr.201800341
Nurmamat M., Okamoto K., Zhu S., … Kimura A. Topologically non-trivial phase-change compound GeSb2Te4. ACS Nano. 2020;14(7): 9059–9065. https://doi.org/10.1021/acsnano.0c04145
Shvets I. A., Klimovskikh I. I., Aliev Z. S., … Chulkov E. V. Impact of stoichiometry and disorder on the electronic structure of the PbBi2Te4−xSex topological insulator. Physical Review B. 2017;96: 235124–235127. https://doi.org/10.1103/PhysRevB.96.235124
Otrokov M. M., Klimovskikh I. I., Bentmann H. ... Chulkov E. V. Prediction and observation of an antiferromagnetic topological insulator. Nature. 2019;576: 416–422. https://doi.org/10.1038/s41586-019-1840-9
Jahangirli Z. A., Alizade E. H., Aliev Z. S., … Chulkov E. V. Electronic structure and dielectric function of Mn-Bi-Te layered compounds. Journal of Vacuum Science and Technology B. 2019;37: 062910. https://doi.org/10.1116/1.5122702
Eremeev S. V., Rusinov I. P., Koroteev Yu. M., … Chulkov E. V. Topological magnetic materials of the (MnSb2Te4)·(Sb2Te3)n van der Waals compounds family. The Journal of Physical Chemistry Letters. 2021;12(17): 4268–4277. https://doi.org/10.1021/acs.jpclett.1c00875
Garnica M., Otrokov M. M., Casado Aguilar P., … Miranda R. Native point defects and their implications for the Dirac point gap at MnBi2Te4(0001). npj Quantum Materials. 2022;7: 7. https://doi.org/10.1038/s41535-021-00414-6
Coughlan C., Ibanez M., Dobrozhan O., Singh A., Cabot A., Ryan K. M. Compound copper chalcogenide nanocrystals. Chemical Reviews. 2017;117(9): 5865−6109. https://doi.org/10.1021/acs.chemrev.6b00376
Xing C., Lei Y., Liu M., Wu S., He W. Environment-friendly Cu-based thin film solar cells: materials, devices and charge carrier dynamics. Physical Chemistry Chemical Physics. 2021;23: 16469–16487. https://doi.org/10.1039/D1CP02067F
Fu H. Environmentally friendly and earth-abundant colloidal chalcogenide nanocrystals for photovoltaic applications. Journal of Materials Chemistry C. 2018;6: 414–445. https://doi.org/10.1039/C7TC04952H
Kumar M., Meena B., Subramanyam P., Suryakala D., Subrahmanyam C. Emerging copper-based semiconducting materials for photocathodic applications in solar driven water splitting. Catalysts. 2022;12(10): 1198. https://doi.org/10.3390/catal12101198
Akhil S., Balakrishna R. G. CuBiSe2 quantum dots as ecofriendly photosensitizers for solar cells. ACS Sustainable Chemistry and Engineering Journal. 2022;10(39): 13176–13184. https://doi.org/10.1021/acssuschemeng.2c04333
Deng T., Wei T. R., Song Q., … Chen L. Thermoelectric properties of n-type Cu4Sn7S16-based compounds. RSC Advances. 2019;9: 7826. https://doi.org/10.1039/c9ra00077a
Choudhury A., Mohapatra S., Asl H. Y., … Petricek V. New insights into the structure, chemistry, and properties of Cu4SnS4. Journal of Solid State Chemistry. 2017;253: 192–201. http://dx.doi.org/10.1016/j.jssc.2017.05.033
Ivanchenko M., Jing H. Smart design of noble metal–copper chalcogenide dual plasmonic heteronanoarchitectures for emerging applications: progress and prospects. Chemistry of Materials. 2023;35(12): 4598–4620. https://doi.org/10.1021/acs.chemmater.3c00346
Zhou N., Zhao H., Li X., …Tong X. Activating earth-abundant element-based colloidal copper chalcogenide quantum dots for photodetector and optoelectronic synapse applications. ACS Materials Letters. 2023;5(4): 1209–1218. https://doi.org/10.1021/acsmaterialslett.3c00035
Polevik A. O., Sobolev A. V., Glazkova I. S., …Shevelkov A. V. Interplay between Fe(II) and Fe(III) and its impact on thermoelectric pProperties of iron-substituted colusites Cu26−xFexV2Sn6S32. Compounds. 2023;3: 348–364. https://doi.org/10.3390/compounds3020027
Polevik A. O., Efimova A. S., Sobolev A. V., … Shevelkov A. V. Atomic distribution, electron transfer, and charge compensation in artificial iron-bearing colusites Cu26-xFexTa2-gSn6S32. Journal of Alloys and Compounds. 2024;976: 173280. https://doi.org/10.1016/j.jallcom.2023.173280
Nasonova D. I., Sobolev A. V., Presniakov I. A., Presniakov I. A., Andreeva K. D., Shevelkov A. V. Position and oxidation state of tin in Sn-bearing tetrahedrites Cu12-xSnxSb4S13. Journal of Alloys and Compounds. 2019;778: 774–778. https://doi.org/10.1016/j.jallcom.2018.11.168
Reddy V. R. M., Pallavolu M. R., Guddeti P. R., … Park C. Review on Cu2SnS3, Cu3SnS4, and Cu4SnS4 thin films and their photovoltaic performance. Journal of Industrial and Engineering Chemistry. 2019;76: 39–74. https://doi.org/10.1016/j.jiec.2019.03.035
Lin S., Li W., Pei Y. Thermally insulative thermoelectric argyrodites. Materials Today. 2021;48: 198–213. https://doi.org/10.1016/j.mattod.2021.01.007
Nilges T., Pfitzner A. A structural differentiation of quaternary copper argyrodites: structure – property relations of high temperature ion conductors, Zeitschrift für Kristallographie - Crystalline Materials. 2005; 220(2-3): 281–294. https://doi.org/10.1524/zkri.220.2.281.59142
Babanly M. B., Yusibov Y. A., Imamaliyeva S. Z., Babanly D. M., Alverdiyev I. J. Phase diagrams in the development of the argyrodite family compounds and solid solutions based on them. Journal of Phase Equilibria and Diffusion. 2024;45: 228–255. https://doi.org/10.1007/s11669-024-01088-w
Wu X., Liu K., Wang R., Yang G., Lin J., Liu X. Multifunctional CuBiS2 nanoparticles for computed tomography guided photothermal therapy in preventing arterial restenosis after endovascular treatment. Frontiers in Bioengineering and Biotechnology. 2020; 8: 585631. https://doi.org/10.3389/fbioe.2020.585631
Askari N., Askari M. B. Apoptosis-inducing and image-guided photothermal properties of smart nano CuBiS2. Materials Research Express. 2019;6: 065404. https://doi.org/10.1088/2053-1591/ab0c3e
Zhou M., Tian M., Li C. Copper-based nanomaterials for cancer imaging and therapy. Bioconjugate Chemistry. 2016;27(5): 1188-99. https://doi.org/10.1021/acs.bioconjchem.6b00156
Mindat.org: Open database of minerals, rocks, meteorites and the localities they come from. Available at: http://www.mindat.org
Filippou D., Germain P., Grammatikopoulos T. Recovery of metal values from copper—arsenic minerals and other related resources. Mineral Processing and Extractive Metallurgy Review. 2007;28: 247–298. https://doi.org/10.1080/08827500601013009
Afinogenov Yu. P., Goncharov E. G., Semenova G. V., Zlomanov V. P. Physicochemical analysis of multicomponent systems*. Moscow: MFTIB Publ.; 2006. 332 p. (In Russ.)
Lazarev V. B., Shevchenko V. I., Marenkin S. F. Some problems of physics, chemistry and materials science of new semiconductors. In: Physical methods for studying inorganic materials. Moscow: Nauka Publ.; 1981. p.19–34. (In Russ.)
West D. R. F. Ternary phase diagrams in materials science. Boca Raton: CRC Press; 2013. 3rd edition. p. 240. https://doi.org/10.1201/9781003077213
Saka H. Introduction to phase diagrams in materials science and engineering. London: World Scientific Publishing Company; 2020. pp.188. https://doi.org/10.1142/11368
Babanly M. B., Mashadiyeva L. F., Babanly D. M., Imamaliyeva S. Z., Taghiyev D.B., Yusibov Y.A. Some issues of complex investigation of the phase equilibria and thermodynamic properties of the ternary chalcogenide systems by the EMF method. Russian Journal of Inorganic Chemistry. 2019;64(13): 1649–1671. https://doi.org/10.1134/S0036023619130035
Imamaliyeva S. Z. Phase diagrams in the development of thallium-ree tellurides with Tl5Te3 structure and multicomponent phases based on them overview. Condensed Matter and Interphases. 2018;20(3): 332–347. https://doi.org/10.17308/kcmf.2018.20/570
Babanly M. B., Mashadiyeva L. F., Imamaliyeva S. Z., Tagiev D. B., Babanly D. M., Yusibov Yu. A. Thermodynamic properties of complex copper chalcogenides. Review. Chemical Problems. 2024;3: 243–280. https://doi.org/10.32737/2221-8688-2024-3-243-280
Babanly M. B., Yusibov Yu. A., Babanly N. B. The EMF method with solid-state electrolyte in the thermodynamic investigation of ternary copper and silver chalcogenides. In: Electromotive force and measurement in several systems. S. Kara (ed.). Intechweb.Org. 2011. p. 57–78. https://doi.org/10.5772/28934
Babanly M. B., Yusibov Yu. A. Electrochemical methods in thermodynamics of inorganic systems. Baku: ELM Publ.; 2011. 306 p. (In Russ.)
Babanly M. B, Akhmadyar A., Kuliev A. Thermodynamic properties of intermediate phases in Tl-Sb(Bi)-Te systems. Russian Journal of Physical Chemistry. 1985;59(3): 335–336.
Yusibov Y. A., Babanly M. B., Gasanov R. F. Thermodynamic properties and solid phase equilibrium of Tl-Ga-Te system*. Inorganic Materials. 1991;27(7): 1402–1406. (In Russ.)
Babanly M. B., Kuliev A. A. Phase equilibria and thermodynamic properties in the system Ag-Tl-Te*. Russian Journal of Inorganic Chemistry. 1982;27(6); 1538–1546. (In Russ.)
Babanly M. B., Muradova G. V., Ilyasly T. M., Babanly D. M. Solid-phase equilibria and thermodynamic properties of the Tl2Se-As2Se3-Se system. Russian Journal of Inorganic Chemistry. 2012;57: 270–273. https://doi.org/10.1134/S0036023612020039
Aliev Z. S., Babanly M.B. Solid-state equilibria and thermodynamic properties of compounds in the Bi-Te-I system. Inorganic Materials. 2008;44(10): 1076–1080. https://doi.org/10.1134/S0020168508100099
Jafarov Y. I., Ismaylova S. A., Aliev Z. S., Imamaliyeva S. Z., Yusibov Y. A., Babanly M. B. Experimental study of the phase diagram and thermodynamic properties of the Tl-Sb-S system. CALPHAD. 2016;55: 231–237. https://doi.org/10.1016/j.calphad.2016.09.007
Babanly D.M., Aliev Z.S., Jafarli F.Y., Babanly M.B. Phase equilibria in the Tl-TlCl-Te system and thermodynamic properties of the compound Tl5Te2Cl. Russian Journal of Inorganic Chemistry. 2011;56: 442–449. https://doi.org/10.1134/S0036023611030065
Seidzade A. E., Orujlu E. N., Babanly D. M., Imamaliyeva S. Z., Babanly M. B. Solid-phase equilibria in the SnTe–Sb2Te3–Te system and the thermodynamic properties of the tin–antimony tellurides. Russian Journal of Inorganic Chemistry. 2022;67(5): 683–690. https://doi.org/10.1134/S003602362205014X
Aliev Z. S., Zúñiga F. J., Koroteev Y. M., … Chulkov E. V. Insight on a novel layered semiconductors: CuTlS and CuTlSe. Journal of Solid State Chemistry. 2016;242: 1–7. https://doi.org/10.1016/j.jssc.2016.05.036
Vijayan K., Thirumalaisamy L., Vijayachamundeeswari S. P., Sivaperuman K., Ahsan N., Okada Y. A novel approach for designing a sub-bandgap in CuGa(S,Te)2 thin films assisted with numerical simulation of solar cell devices for photovoltaic application. ACS Omega. 2023;8(25): 22414–22427. https://doi.org/10.1021/acsomega.2c08196
Vijayan K., Vijayachamundeeswari S. P. Scrutinizing the effect of substrate temperature and enhancing the multifunctional attributes of spray deposited copper gallium sulfide (CuGaS2) thin films. Phase Transitions. 2023;96(8): 607–619. https://doi.org/10.1080/01411594.2023.2238110
Maeda T., Nakanishi R., Yanagita M., Wada T. Control of electronic structure in Cu(In, Ga)(S, Se)2 for high-efficiency solar cells. Japanese Journal of Applied Physics. 2020;59: SGGF12. https://doi.org/10.35848/1347-4065/ab69e0
Shukla S., Sood M., Adeleye D., … Siebentritt S. Over 15% efficient wide-band-gap Cu(In,Ga)S2 solar cell: suppressing bulk and interface recombination through composition engineering. Joule. 2021;5(7): 1816–1831. https://doi.org/10.1016/j.joule.2021.05.004
Yang Y., Xiong X., Han J. Modification of surface and interface of copper indium gallium selenide thin films with sulfurization. Emerging Materials Research. 2022;11(3): 325–330. https://doi.org/10.1680/jemmr.21.00171
Stanbery B. J., Abou-Ras D., Yamada A., Mansfield L. CIGS photovoltaics: reviewing an evolving paradigm. Journal of Physics D: Applied Physics. 2021;55(17): 173001. https://doi.org/10.1088/1361-6463/ac4363
Li W., Song Q., Zhao C., … Yang C. Toward high-efficiency Cu(In,Ga)(S,Se)2 solar cells by a simultaneous selenization and sulfurization rapid thermal process. ACS Applied Energy Materials Journal. 2021;4(12): 14546–14553. https://doi.org/10.1021/acsaem.1c03198
Khavari F., Keller J., Larsen J. K., Sopiha K. V., Törndahl T., Edoff M. Comparison of sulfur incorporation into CuInSe2 and CuGaSe2 thin-film solar absorbers. Physica Status Solidi A. 2020;217(22). https://doi.org/10.1002/pssa.202000415
Wang Y., Yang Y., Wang L., … Guo Z. Design, photoelectric properties and electron transition mechanism of Cr doped p-CuGaS2 compound based on intermediate band effect. Materials Today Physics. 2021;21: 100545. https://doi.org/10.1016/j.mtphys.2021.100545
Fan F.J., Liang Wu L., Yu S.-H. Energetic I-III-VI2 and I2-II-IV-VI4 nanocrystals: synthesis, photovoltaic and thermoelectric applications. Energy Environmental Science. 2014;7: 190-208. https://doi.org/10.1039/C3EE41437J
Torimoto T., Kameyama T., Uematsu T., Kuwabata S. Controlling optical properties and electronic energy structure of I–III–VI semiconductor quantum dots for improving their photofunctions. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2023;54: 100569. https://doi.org/10.1016/j.jphotochemrev.2022.100569
Gullu H. H., Isik M., Gasanly N. M. Structural and optical properties of thermally evaporated Cu-Ga-S (CGS) thin films. Physica B: Condensed Matter. 2018;547: 92–96. https://doi.org/10.1016/j.physb.2018.08.015
Soni A., Gupta V., Arora C. M., Dashora A., Ahuja B. L. Electronic structure and optical properties of CuGaS2 and CuInS2 solar cell materials. Solar Energy. 2010;84(8): 1481–1489. https://doi.org/10.1016/j.solener.2010.05.010
Candeias M. B., Fernandes T. V., Falcão B. P., … Leitão J. P. Cu(In,Ga)Se2-based solar cells for space applications: proton irradiation and annealing recovery. Journal of Materials Science. 2023;58: 16385–16401. https://doi.org/10.1007/s10853-023-09033-x
Plata J. J., Posligua V., Márquez A. M., Sanz J. F., Grau-Crespo R. Charting the lattice thermal conductivities of I–III–VI2 chalcopyrite semiconductors. Chemistry of Materials Journal. 2022;34(6): 2833–2841. https://doi.org/10.1021/acs.chemmater.2c00336
Djelid K., Seddik T., Merabiha O., … Bin Omran S. Effects of alloying chalcopyrite CuTlSe2 with Na on the electronic structure and thermoelectric coefficients: DFT investigation. The European Physical Journal Plus. 2022;137: 1347. https://doi.org/10.1140/epjp/s13360-022-03577-8
Gudelli V. K., Kanchana V., Vaitheeswaran G., Svane A., Christensen N. E. Thermoelectric properties of chalcopyrite type CuGaTe2 and chalcostibite CuSbS2. Journal of Applied Physics. 2013;114: 1223707-8. https://doi.org/10.1063/1.4842095
Plirdpring T., Kurosaki K., Kosuga A., … Yamanaka S. Chalcopyrite CuGaTe2: a high-efficiency bulk thermoelectric material. Advanced Materials. 2012;24(127): 3622–3626. https://doi.org/10.1002/adma.201200732
Kurosaki K., Goto K., Kosuga A., Yamanaka S. Thermoelectric and thermophysical characteristics of Cu2Te-Tl2Te pseudo binary system. Materials Transactions. 2006;47(6): 1432-1435. https://doi.org/10.2320/matertrans.47.1432
Matsumoto H., Kurosaki K., Muta H., Yamanaka S. Thermoelectric properties of TlCu3Te2 and TlCu2Te2. Journal of Electronic Materials. 2009;38: 1350–1353. https://doi.org/10.1007/s11664-009-0664-z
Jiang C., Tozawa M., Akiyoshi K.,… Torimoto T. Development of Cu–In–Ga–S quantum dots with a narrow emission peak for red electroluminescence. The Journal of Chemical Physics. 2023;158: 164708. https://doi.org/10.1063/5.0144271
Kim Y.-K., Ahn S.-H., Chung K., Cho Y.-S., Choi C.-J. The photoluminescence of CuInS2 nanocrystals: Effect of non-stoichiometry and surface modification. Journal of Materials Chemistry. 2012;22: 1516–1520. https://doi.org/10.1039/c1jm13170b
Isik M., Gasanly N.M., Gasanova L. G., Mahammadov A. Z. Thermoluminescence study in Cu3Ga5S9 single crystals: application of heating rate and Tm-Tstop methods. Journal of Luminescence. 2018;199: 334–338. https://doi.org/10.1016/j.jlumin.2018.03.076
Kim J.-H., Han H., Kim M. K., … Lim J. A. Solution-processed near-infrared Cu(In,Ga)(S,Se)2 photodetectors with enhanced chalcopyrite crystallization and bandgap grading structure via potassium incorporation. Science Reports. 2021;11: 7820. https://doi.org/10.1038/s41598-021-87359-9
Nakamura M., Yamaguchi K., Kimoto Y., Yasaki Y., Kato T., Sugimoto H. Cd-free Cu(In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35%. IEEE Journal of Photovoltaics. 2019;9(6): 1863–1867. https://doi.org/10.1109/JPHOTOV.2019.2937218
Clarke D., Breguel R. Analysis of thermodynamic properties of Cu(In,Ga)Se2 thin-film solar cells for viable space application. PAM Review: Energy Science and Technology. 2018;5: 131–149. https://doi.org/10.5130/pamr.v5i0.1501
Shevelkov A. V. Chemical aspects of the design of thermoelectric materials, Russian Chemical Reviews. 2008;77: 1–19. https://doi.org/10.1070/rc2008v077n01abeh003746
Berger R., Eriksson L. Crystal structure, refinement of monoclinic TlCu3Se2. Journal of Less-Common Metals. 1990;61: 101–108. https://doi.org/10.1016/0022-5088(90)90318-e
Klepp K. O., Yvon K. Thallium dithiotricuprate (I). Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry. 1980;36: 2389–2391. https://doi.org/10.1107/s0567740880008795
Norén L., Larsson K., Delaplane R. G., Berger R. Size or polarisability effects? A comparative study of TlCu7S4 and TlCu7Se4. Journal of Alloys and Compounds. 2001;314: 114–123. https://doi.org/10.1016/S0925-8388(00)01202-0
Babanly M. B., Yusibov Y. A., Abishev V. T. Ternary chalcogenides based on copper and silve* Baku: BSU Publ.; 1993. 342 p. (In Russ.)
Abishev V. T., Babanly M. B., Kuliyev A. A. Phase equilibria in the Tl2S–Cu2S system. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 1978;21(5): 630–632.
Mammadov M. I., Alizade M. Z., Zamanov S. K., Aliyev O. M. Study of the phase diagram of the Tl2S-Cu2S system*. Russian Journal of Inorganic Chemistry. 1978;14(8): 1527–1529. (In Russ.)
Gardes B., Brun G., Raymond A., Tedenac J. C. Trois phases ternaire Cu-Tl-S. Materials Research Bulletin. 1979;14(7): 943–946. https://doi.org/10.1016/0025-5408(79)90161-2
Sobbott E. Das system Tl2S-Cu2S. Monatshefte Chemie. 1994;115(12): 1397–1400. https://doi.org/10.1007/BF00816337
Babanly M. B., Un L. T., Kuliev A. A. System Tl2S–CuTlS–S*. Russian Journal of Inorganic Chemistry. 1985;30(4): 1047–1050. (In Russ.)
Babanly M.B., Un L.T., Kuliev A.A. System Tl–Tl2S–CuTlS–Cu*. Russian Journal of Inorganic Chemistry.1985;30(4): 1043–1046. (In Russ.)
Babanly M. B., Un L. T., Kuliev A. A. System Cu-Tl-S*. Russian Journal of Inorganic Chemistry. 1986;32(7): 1837–1844. (In Russ.)
Abishov V. T., Babanly M. B., Kuliev A. A. Phase equilibria in the Cu2Se-Tl2Se system*. Inorganic Materials. 1979;15(11): 1926. (In Russ.)
Voroshilov Yu. V., Evstigneeva T. L., Nekrasov I. Ya. Crystal chemical tables of ternary chalcogenides*. Moscow: Nauka Publ.; 1989. 224 p. (In Russ.)
Babanly N. B. Thermodynamic properties of some ternary phases of the Cu-Tl-Se system. Inorganic Materials. 2011;47: 1306–1310. https://doi.org/10.1134/S0020168511120016
Babanly N. B. Phase diagram of the Tl-Tl2Se-Cu2Se-Cu system. Journal of Qafqaz University-Chemistry. 2015;5(1): 43–50.
Kovaleva I. S., Kranchevich K. S., Nikolskaya G. F. Section of Cu2Te–Tl2Te3 in the Cu–Tl–Te system.* Inorganic Materials. 1971;7(5): 865–867. (In Russ.)
Babanly N. B., Salimov Z. E., Akhmedov M. M., Babanly M. B. Thermodynamic study of the Cu–Tl–Te system by the EMF method with solid electrolyte Cu4RbCl3I2. Russian Journal of Electrochemistry. 2012;48: 68–73. https://doi.org/10.1134/S1023193512010041
Kleep K. O. Darstellung und Kristallostructur von TlCu3Te2: ein Tellurocuprat mit aufgefuelltem CuAl2-typ. Journal of the Less-Common Metals. 1987;127: 79–89. https://doi.org/10.1016/0022-5088(87)90194-9
Bradtmöller S., Böttcher P. Crystal structure of copper tetrathallium trutelluride CuTl4Te3. Zeitschrift für Kristallographie. 1994;209: 97. https://doi.org/10.1524/zkri.1994.209.1.97
Babanly M. B., Salimov Z. E., Babanly N. B., Imamaliyeva S. Z.Thermodynamic properties of copper thallium tellurides. Inorganic Materials. 2011;47: 361–364. https://doi.org/10.1134/S0020168511040030
Babanly N. B., Aliev Z. S., Yusibov Yu. A., Babanly M. B. A thermodynamic study of Cu—Tl-S system by EMF method with Cu4RbCl3I2 solid electrolyte. Russian Journal of Electrochemistry. 2010;46: 354–358. https://doi.org/10.1134/S1023193510030146
Babanly M. B., Yusibov Y. A., Abishov V. T. Method of electromotive forces in the thermodynamics of complex semiconductor substances*. Baku: BSU Publ.; 1992. 327 p. (In Russ.)
Morachevsky A. G., Voronin G. F., Heiderich V. A., Kutsenok I. B. Electrochemical methods of research in the thermodynamics of metallic systems*. Moscow: ICC “Akademkniga” Publ.; 2003. 334 p. (In Russ.)
Aliev Z. S., Musayeva S. S. Imamaliyeva S. Z., Babanlı M. B. Thermodynamic study of antimony chalcoiodides by EMF method with an ionic liquid. Journal of Thermal Analysis and Calorimetry. 2018;133(2): 1115–1120. https://doi.org/10.1007/s10973-017-6812-4
Osadchii E. G., Korepanov Y. I., Zhdanov N. N. A multichannel electrochemical cell with glycerin-based liquid electrolyte. Instruments and Experimental Techniques. 2016;59: 302–304. https://doi.org/10.1134/S0020441216010255
Voronin M. V., Osadchii E. G. Determination of thermodynamic properties of silver selenide by the galvanic cell method with solid and liquid electrolytes. Russian Journal of Electrochemistry. 2011;47: 420–426. https://doi.org/10.1134/S1023193511040203
Orujlu E. N., Babanly D. M., Alakbarova T. M., Orujov N. I., Babanly M. B. Study of the solid-phase equilibria in the GeTe-Bi2Te3-Te system and thermodynamic properties of GeTe-rich germanium bismuth tellurides. The Journal of Chemical Thermodynamics. 2024;196: 107323. https://doi.org/10.1016/j.jct.2024.107323
Aliyev F. R., Orujlu E. N., Mashadiyeva L. F., Dashdiyeva G. B., Babanly D. M. Solid – phase equilibria and thermodynamic properties of the Sb-Te-S system. Physics and Chemistry of Solid State. 2024;25(1): 26–34. https://doi.org/10.15330/pcss.25.1.26-34
Moroz M., Tesfaye F., Demchenko P., … Hupa L. Phase equilibria and thermodynamic properties of selected compounds in the Ag-Ga-Te-AgBr system. Journal of Phase Equilibria and Diffusion. 2024;45: 447–458. https://doi.org/10.1007/s11669-024-01095-x
Moroz M., Tesfaye F., Demchenko P., … Gladyshevskii R. Synthesis, thermodynamic properties, and structural characteristics of multicomponent compounds in the Ag–Ni–Sn–S System. JOM. 2023;75: 2016–2025. https://doi.org/10.1007/s11837-023-05784-9
Moroz M. V., Demchenko P. Y., Tesfaye F… Reshetnyak O. V. Thermodynamic properties of selected compounds of the Ag–In–Se system determined by the electromotive force method. Physics and Chemistry of Solid State. 2022;23(3): 575–581. https://doi.org/10.15330/pcss.23.3.575-581
Babanly N. B., Orujlu E. N., Imamaliyeva S. Z., Yusibov Y. A., Babanly M. B. Thermodynamic investigation of silver-thallium tellurides by EMF method with solid electrolyte Ag4RbI5. The Journal of Chemical Thermodynamics. 2019;128: 78–86. https://doi.org/10.1016/j.jct.2018.08.012
Amiraslanova A. J., Mammadova A. T., Imamaliyeva S. Z., Alverdiyev I. J., Yusibov Yu. A., Babanly M. B. Thermodynamic investigation of Ag8GeТe6 and Ag8GeТe6-xSex solid solutions by the emf method with a solid Ag+ conducting electrolyte. Russian Journal of Electrochemistry. 2023;12: 834–842. https://doi.org/10.31857/s0424857023120034
Babanly M. B., Abishov V. T., Kuliev A. A. Crystal lattice of Cu(Ag)TlX compounds and phase equilibria in Cu(Ag)TlS-Cu(Ag)TlSe systems. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 1981;24(8): 931–934.
Babanly M. B., Lee Tai Un, Kuliev A. A. Phase equilibria in CuTlS(Se)-AgTlS(Se) systems*. Inorganic Materials. 1985;21(10): 1649–1652. (In Russ.)
Lee Tai Un, Babanly M. B., Kuliev A. A. System AgTlS+CuTlSe«AgTlSe+CuTlS*. Russian Journal of Inorganic Chemistry. 1985;30(9): 2353–2355. (In Russ.)
Babanly M. B., Lee Tai Un, Kuliev A. A. Study of phase equilibria in the CuTlS-CuTlSe-AgTlTe system. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 1986;29(2): 112–113.
Chalbaud L. M., Delgado G. D., Delgado J. M., Mora A. E., Sagredo V. Synthesis and single-crystal structural study of Cu2GeS3. Materials Research Bulletin. 1997;32(10): 1371–1376. https://doi.org/10.1016/S0025-5408(97)00115-3
Li Y., Cao T., Liu G., … Zhou M. Enhanced thermoelectric properties of Cu2SnSe3 by (Ag, In)-Co-doping. Advanced Functional Materials. 2016;26: 6025–6032. https://doi.org/10.1002/adfm.201601486
Ma R. L., Liu G., Li Y., … Li L. Thermoelectric properties of S and Te-doped Cu2SnSe3 prepared by combustion synthesis. Journal of Asian Ceramic Societies. 2018;1: 13–19. https://doi.org/10.1080/21870764.2018.1439609
Prasad S., Rao A., Gahtori B., … Kuo Y.-K. The low and high temperature thermoelectric properties of Sb doped Cu2SnSe3. Materials Research Bulletin. 2016;83: 160–166. https://doi.org/10.1016/j.materresbull.2016.06.002
Ding M., Bai C., Lang Y., …Almutairi Z. Enhanced thermoelectric performance of Cu2SnSe3 by synergic effects via cobalt-doping. Journal of Alloys and Compounds. 2024;988: 174272. https://doi.org/10.1016/j.jallcom.2024.174272
Ma R. L., Liu G., Li J., … Li L. Effect of secondary phases on thermoelectric properties of Cu2SnSe3. Ceramics International. 2017;43(9): 7002–7010. https://doi.org/10.1016/j.ceramint.2017.02.126
Siyar M., Siyar M., Cho J. Y., … Parker C. Thermoelectric properties of Cu2SnSe3-SnS. Journal of Composite Materials. 2019;12(13): 2040–2043. https://doi.org/10.3390/ma12132040
Zhao D., Wang X., Wu D. Enhanced thermoelectric properties of graphene, Cu2SnSe3 composites. Crystals. 2017;7: 71. https://doi.org/10.3390/cryst7030071
Yang J., Lu B., Song R., …Qiao G.. Realizing enhanced thermoelectric properties in Cu2GeSe3 via a synergistic effect of In and Ag dual-doping. Journal of the European Ceramic Society. 2022;42(1): 169–174. https://doi.org/10.1016/j.jeurceramsoc.2021.10.009
Yang J., Song R., Zhao L., …Qiao G. Magnetic Ni doping induced high power factor of Cu2GeSe3-based bulk materials. Journal of the European Ceramic Society. 2021;41(6): 3473–3479. https://doi.org/10.1016/j.jeurceramsoc.2020.12.037
Wang R., Li A., Huang T., … Wang G. Enhanced thermoelectric performance in Cu2GeSe3 via (Ag, Ga)-co-doping on cation sites. Journal of Alloys and Compounds. 2018;769: 218–225. https://doi.org/10.1016/j.jallcom.2018.07.318
Jacob S., Delatouche B., Péré D., Jacob A., Chmielowski R. Insights into the thermoelectric properties of the Cu2Ge (S1-xSex)3 solid solutions. Materials Today. 2017;4: 12349–12359. https://doi.org/10.1016/j.matpr.2017.10.003
Pejjai B., Reddy V. R. M., Gedi S., Park C. Review on earth-abundant and environmentally benign Cu–Sn–X(X = S, Se) nanoparticles by chemical synthesis for sustainable solar energy conversion. Journal of Industrial and Engineering Chemistry. 2018;60: 19–52. https://doi.org/10.1016/j.jiec.2017.09.033
Lokhande A. C., Chalapathy R. B. V., He M., Joo E. Development of Cu2SnS3 (CTS) thin film solar cells by physical techniques: A status review. Solar Energy Materials and Solar Cells. 2016;153: 4–107. https://doi.org/10.1016/j.solmat.2016.04.003
Chantana J., Chantana J., Uegaki H., Minemoto T. Influence of Na in Cu2SnS3 film on its physical properties and photovoltaic performances. Thin Solid Films. 2017;636: 431-437. https://doi.org/10.1016/j.tsf.2017.06.044
Chaudhari J. J., Joshi U. S. Fabrication of high quality Cu2SnS3 thin film solar cell with 1.12% power conversion efficiency obtain by low cost environment friendly sol-gel technique. Materials Research Express. 2018;5: 036203. https://doi.org/10.1088/2053-1591/aab20e
De Wild J., Babbe F., Robert E. V. C. Silver-doped Cu2SnS3 absorber layers for solar cells application. IEEE Journal of Photovoltaics. 2018;8: 299–304. https://doi.org/10.1109/JPHOTOV.2017.2764496
Oliva F., Arqués L., Acebo L. Characterization of Cu2SnS3 polymorphism and its impact on optoelectronic properties. Journal of Materials Chemistry A. 2017;5: 23863–23871. https://doi.org/10.1039/C7TA08705E
Zaki M. Y., Sava F., Simandan I. D., … Galca A. C. Cu2SnSe3 phase formation from different metallic and binary chalcogenides stacks using magnetron sputtering. Materials Science in Semiconductor Processing. 2023;153: 107195. https://doi.org/10.1016/j.mssp.2022.107195
Pallavolu M. R., Banerjee A. N., Minnam Reddy V. R., Joo S. W., Barai H. R., Park C. Status review on the Cu2SnSe3 (CTSe) thin films for photovoltaic applications. Solar Energy. 2020;208: 1001–1030. https://doi.org/10.1016/j.solener.2020.07.095
Yang C., Luo Y., Xia Y., … Cui J. Improved thermoelectric performance of p-type argyrodite Cu8GeSe6 via the simultaneous engineering of the electronic and phonon transports. ACS Applied Materials and Interfaces Journal. 2022;14: 16330–16337. https://doi.org/10.1021/acsami.2c02625
Zong P., Li Y., Negishi R., Li Z., Zhang C., Wan C. Thermoelectric performance of Cu8SiS6 with high electronic band degeneracy. ACS Applied Electronic Materials Journal. 2023;6(5): 2832–2838. https://doi.org/10.1021/acsaelm.3c00423
Schwarzmüller S., Souchay D., Günther D., … Oeckler O. Argyrodite-type Cu8GeSe6–xTex (0 ≤ x ≤ 2): temperature-dependent crystal structure and thermoelectric properties. Zeitschrift für anorganische und allgemeine Chemie. 2018;664: 1915–1922. https://doi.org/10.1002/zaac.201800453
Fan Y., Wang G., Wang R., … Zhou X.-Y. Enhanced thermoelectric properties of p-type argyrodites Cu8GeS6 through Cu vacancy. Journal of Alloys and Compounds. 2020;822: 153665. https://doi.org/10.1016/j.jallcom.2020.153665
Jiang B., Qiu P., Eikeland E., … Chen L. Cu8GeSe6-based thermoelectric materials with an argyrodite structure. Journal of Materials Chemistry C. 2017;5: 943–952. https://doi.org/10.1039/C6TC05068A
Brammertz G., Vermang B., ElAnzeery H., Sahayaraj S., Ranjbar S., Meuris M., Poortmans J. Fabrication and characterization of ternary Cu8SiS6 and Cu8SiSe6 thin film layers for optoelectronic applications. Thin Solid Films. 2016;616: 649–654. https://doi.org/10.1016/j.tsf.2016.09.049
Gao L., Lee M.-H., Zhang J. Metal-cation substitutions induced the enhancement of second harmonic generation in A8BS6 (A = Cu, and Ag; B = Si, Ge, and Sn). New Journal of Chemistry. 2019;43: 3719–3724. https://doi.org/10.1039/C8NJ06270F
Cambi L., Monselise G. G. Gazzetta Chimica Italiana. 1936;66: 696-700. Quoted from [153]
Venkatraman M., Blachnik R., Schlieper A. The phase diagrams of M2X-SiX2 (M is Cu, Ag; X is S, Se). Thermochimica Acta. 1995;249: 13–20. https://doi.org/10.1016/0040-6031(95)90666-5
Olekseyuk I. D., Piskach L. V., Zhbankov O. Y., Parasyuk O. V., Kogut Y. M., Phase diagrams of the quasi-binary systems Cu2S–SiS2 and Cu2SiS3–PbS and the crystal structure of the new quaternary compound Cu2PbSiS4. Journal of Alloys and Compounds. 2005;399(1-2): 149–154. https://doi.org/10.1016/j.jallcom.2005.03.086
Bayramova U. R., Babanly K. N., Ahmadov E. I., Mashadiyeva L. F., Babanly M. B. Phase equilibria in the Cu2S-Cu8SiS6-Cu8GeS6 system and thermodynamic functions of phase transitions of the Cu8Si(1-x)GexS6 argyrodite phases. Journal of Phase Equilibria and Diffusion. 2023;44: 509–519. https://doi.org/10.1007/s11669-023-01054-y
Shpak O., Kogut Y., Fedorchuk A., Piskach L., Parasyuk O. The Cu2Se–PbSe–SiSe2 system and the crystal structure of CuPb1,5SiSe4. Lesia Ukrainka Eastern European National University Scientific Bulletin. Series: Chemical Sciences. 2014;21(298): 39–47.
Bayramova U. R., Babanly K. N., Mashadiyeva M. F., Yusibov Yu. A., Babanly M. B. Phase equilibria in the Cu2Se-Cu8SiSe6-Cu8GeSe6 system. Russian Journal of Inorganic Chemistry. 2023;68(11): 16714–1625. https://doi.org/10.1134/s0036023623602027
Dogguy M., Rivet J., Flahaut J. Description du systeme ternaire Cu-Si-Te. Journal of the Less Common Metals. 1979;63(2): 129–145. https://doi.org/10.1016/0022-5088(79)90238-8
Chen X. A., Vada H., Sato A., Nozaki H. Synthesis, structure and electronic properties of Cu2SiQ3 (Q = S, Se). Journal of Alloys and Compounds. 1999;290(1-2): 91–96. https://doi.org/10.1016/s0925-8388(99)00208-x
Rivet J., Flahaut J., Laurelle P. Sur un groupe de composes ternaires a structure teraedrique. Comptes Rendus Hebdomadaires des Seances de l Academie des Sciences. 1963;257: 161–164.
Khanafer M., Rivet J., Flahaut J. Etude du système Cu2S-GeS2, Surstructure du composé Cu2GeS3. Transition de phase de Cu8GeS6. Bulletin de la Société Chimique de France. 1973;3: 859–862. (In French.)
Alverdiyev I. J. Refinement of the phase diagram of the Cu2S-GeS2 system. Chemical Problems. 2019;3(17): 423–428. https://doi.org/10.32737/2221-8688-2019-3-423-428
Chang Y. A., Neumann J. P., Choudary U. V. Phase diagrams and thermodynamic properties of ternary copper-sulfur-metal systems. Washington: International Copper Research Association; 1979. 191 p.
Lychmanyuk O. S., Gulay L. D., Olekseyuk I. D., Stępień-Damm J., Daszkiewicz M., Pietraszko A. Investigation of the Ho2X3-Cu2X-ZX2 (X = S, Se; Z = Si, Ge) systems. Polish Journal of Chemistry. 2008;81(3): 353–367.
Carcaly C., Chezeau N., Rivet J., Flahaut J. Description of the systeme GeSe2-Cu2Se. Bulletin de la Société Chimique de France. 1973;1(4): 1191–1195. (In French)
Rogacheva E. I., Melikhova N., Panasenko N. M. A Study of the system Cu2Se-GeSe2. Inorganic Materials*. 1975;11(5): 719–722. (In Russ.)
Piskach L. V., Parasyuk O. V., Romanyuk Ya. E. The phase equilibria in the quasi-binary Cu2GeS3/Se3/–CdS/Se/ systems. Journal of Alloys and Compounds. 2000;299(1-2): 227–231 https://doi.org/10.1016/S0925-8388(99)00797-5
Tomashik V. N. Cu-Ge-Se (Copper–Germanium–Selenium). G. Effenberg, S. Ilyenko (eds.). Springer Materials – the Landolt-Börnstein database. 2006;11(1). p. 288–299.
Alverdiyev I. J. Refinement of the phase diagram of the Cu2Se-GeSe system. Chemical Problems. 2019;17(3): 423–428. https://doi.org/10.32737/2221-8688-2019-3-423-42
Abrikosov N. Kh., Bankina V. F., Sokolova I. F. Cu-Ge-Te system*. Inorganic Materials. 1973;9(1): 129–131. (In Russ.)
Dogguy M., Carcaly C., J. Rivet, Flahaut J. Description du systeme ternaire Cu-Ge-Te. Journal of the Less Common Metals. 1977;51(2): 181–199. https://doi.org/10.1016/0022-5088(77)90081-9
Yusibov Yu. A., Abyshov V. T., Nabiyev B. A., Babanly M. B. Cu-Cu2Te-Cu3Ge system*. Inorganic Materials. 1991;27(11): 2282–2284. (In Russ.)
Olekseyuk I. D., Piskach L. V., Susa L. V. The Cu2GeTe3-CdTe system and the structure of compound Cu2CdGeTe4. Russian Journal of Inorganic Chemistry. 1996;41: 1356–1358.
Khanafer W., Rivet J., Flahaut J. Etude du ternaire Cu–Sn–S. Diagrammes d’equilibre des systémes Cu2S–SnS, Cu2S–Sn2S3 et Cu2S–SnS2. Etude cristallographique des composés Cu4SnS4, Cu2SnS3, Cu2Sn4S9, et Cu4Sn3S8. Bulletin de la Société Chimique de France. 1974;12: 267–276. (In French)
Moh G. H. Tin-containing mineral systems. Part II: Phase relations and mineral assemblage in the Cu–Fe–Zn–S system. Chemie Der Erde. 1975;34: 1–61.
Chang Y. A., Neuman J. P., Choudary U. V. Phase diagrams and thermodynamic properties of ternary copper- sulfur- metal systems: Cu-S-Sn. In: Phase diagrams. Thermodynamic properties ternary copper- sulfur- metal systems. 1979;7: 159–170.
Fiechter S., Martinez M., Schmidt G., Henrion W., Tomm Y. Phase relations and optical properties of semiconducting ternary sulfides in the system Cu–Sn–S. Journal of Physics and Chemistry of Solids. 2003;64(9-10): 1859–1862. https://doi.org/10.1016/S0022-3697(03)00172‑0
Jaulmes S., Rivet J., Laruelle P. Cuivre–etain–soufre Cu4SnS4. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry. 1977;33: 540–542. https://doi.org/10.1107/s0567740877004002
Onoda M., Chen X., Sato A., Wada H. Crystal structure and twinning of monoclinic Cu2SnS3. Materials Research Bulletin. 2000;35: 1563–1570. https://doi.org/10.1016/S0025-5408(00)00347-0
Chen X., Wada H., Sato A., Mieno M. Synthesis, electrical conductivity, and crystal structure of Cu4Sn7S16 and structure refinement of Cu2SnS3. Journal of Solid State Chemistry. 1998;139: 144–151. https://doi.org/10.1006/JSSC.1998.7822
Jemetio J. P. F., Zhou P., Kleinke H. Crystal structure, electronic structure and thermoelectric properties of Cu4Sn7S16. Journal of Alloys and Compounds. 2006;417: 55–59. https://doi.org/10.1016/j.jallcom.2005.09.030
Jaulmes S., Julien Pouzol M, Rivet J., Jumas J. C., Maurin M. Structure cristalline du sulfure de cuivre et detain CuSn3.75S8. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry. 1982; B38(1): 51–54. https://doi.org/10.1107/s0567740882002027
Tomashik V., Lebrun N., Perrot P. Copper-selenium-tin. In: Landolt–Börnstein New Series. Group IV: physical chemistry, vol. 11, ternary alloy systems. Subvolum C. Non-ferrous metal systems. Pt. 1. Selected semiconductor systems. Verlag, Berlin, Heidelberg: Springer; 2006. p. 361–373. https://doi.org/10.1007/10915981_26
Rivet J., Laruelle P., Flahaut J. Phase diagrams of the SnSe-Cu2Se and SnSe2-Cu2Se systems. Order-disorder phenomena and thermoconductivity of Cu2SnSe3 compound. Bulletin de la Société Chimique de France. 1970;(5): 1667–1670.
Berger L. I., Kotina E. K. Phase diagrams of the Cu2Se-SnSe2, Cu2SnSe3-SnSe and Cu2Se-SnSe systems. Inorganic Materials. 1973;9(3): 330–322.
Berger L. I., Kotina E. G., Oboznenko Yu. V., Obodovskaya A. E. Cross sections of the system Cu-Sn-Se. Inorganic Materials. 1973;9(2): 203–207.
Carcaly C., Rivet J., Flahaut J. Description du système ternaire Cu-Sn-Te. Journal of the Less Common Metals. 1975;41(1): 1–18. https://doi.org/10.1016/0022-5088(75)90089-2
Carcaly C., Rivet J., Flahaut J. Commentaires sur le système Cu-Sn-Te. Journal of the Less Common Metals. 1977;51(1): 165–171. https://doi.org/10.1016/0022-5088(77)90184-9
Tomashik V., Lebrun N. Copper-tin-tellurium. In: Landolt–Börnstein New Series. Group IV: physical chemistry, vol. 11, ternary alloy aystems. Subvolum C. Non-ferrous metal systems. Pt. 1. Selected semiconductor systems. Verlag, Berlin, Heidelberg: Springer; 2006. pp. 374–386. https://doi.org/10.1007/10915981_27
Bayramova U. R., Ahmadov E. I., Babanly D. M., Mashadiyeva L. F., Babanly M. B. Calorimetric study of phase transition of Cu8GeSe6 and comparison with other argyrodite family compounds. Chemical Problems. 2023;4(21): 396–403. https://doi.org/10.32737/2221-8688-2023-4-396-403
Alverdiyev I. J., Imamaliyeva S. Z., Akhmedov E. I., Yusibov Yu. A., Babanly M. B. Thermodynamic properties of some ternary compounds of the argyrodite family. Azerbaijan Chemical Journal. 2023;4: 21–30. https://doi.org/10.32737/0005-2531-2023-4-21-30
Yusibov Yu. A., Aliyeva Z. M., Babanly M. B. Thermodynamic properties of the Cu2GeSe3 compound. Azerbaijan Chemical Journal. 2023;1: 108–114. https://doi.org/10.32737/0005-2531-2023-1-108-114
Abbasov A. S., Aliyeva N. A., Aliyev I. Ya., Asadov Y. G., Askerova A. A. Thermodynamic properties of the Cu2GeSe3 and Cu8GeSe6. Report of the Academy of Sciences of the Azerbaijan SSR. 1987;42(12): 27–28.
Alverdiev I. J., Abbasova V. A., Yusibov Yu. A., Tagiev D. B., Babanly M. B. Thermodynamic study of Cu2GeS3 and Cu2–xAgxGeS3 solid solutions by the EMF method with a Cu4RbCl3I2 solid electrolyte. Russian Journal of Electrochemistry. 2018;54(2): 153–158. https://doi.org/10.1134/s1023193518020027
Alverdiyev I. J. Thermodynamic study of Cu2SnSe3 by EMF method with solid electrolyte Cu4RbCl3I. Azerbaijan Journal of Physics. 2019; XXV(3): 29-33.
Mustafayev F. M., Abbasov A. S., Aliyev I. Ya. Thermodynamic investigation of the Cu2S-SnS2. Report of the Academy of Sciences of the Azerbaijan SSR. 1987;43(1): 51–54. (In Russ.)
Stolyarova T. A., Brichkina E. A., Osadchii E. G. Standard enthalpy of Cu2SnS3 (mohite) formation from sulfides. Russian Journal of Inorganic Chemistry. 2020;65: 636–639. https://doi.org/10.1134/S003602362005023X
Mashadieva L. F., Alieva Z. M., Mirzoeva R. Dzh., Yusibov Yu. A., Shevel’kov A. V., Babanly M. B. Phase equilibria in the Cu2Se–GeSe2–SnSe2 system. Russian Journal of Inorganic Chemistry. 2022;67(5): 670–682. https://doi.org/10.1134/S0036023622050126
Bagheri S. M., Alverdiyev I. J., Aliev Z. S., Yusibov Y. A., Babanly M. B. Phase relationships in the 1.5GeS2+Cu2GeSe3«1.5GeSe2 +Cu2GeS3 reciprocal system. Journal of Alloys and Compounds. 2015;625: 131–137. https://doi.org/10.1016/j.jallcom.2014.11.118
Alverdiyev I. J., Aliev Z. S., Bagheri S. M., Mashadiyeva L. F., Yusibov Y. A., Babanly M. B. Study of the 2Cu2S+GeSe2´Cu2Se+GeS2 reciprocal system and thermodynamic properties of the Cu8GeS6-xSex solid solutions. Journal of Alloys and Compounds. 2017;691: 255–262. https://doi.org/10.1016/j.jallcom.2016.08.251
Amiraslanova A. J., Mammadova A. T., Alverdiyev I. J., Yusibov Yu. A., Babanly M. B. Ag8GeS6(Se6) – Ag8GeTe6 systems: phase relations, synthesis, and characterization of solid solutions. Azerbaijan Chemical Journal. 2023;1: 22–29. https://doi.org/10.32737/0005-2531-2023-1-22-29
Alverdiev I. J., Bagheri S. M., Aliyeva Z. M., Yusibov Yu. A., Babanly M. B.. Phase equilibria in the Ag2Se–GeSe2–SnSe2 system and thermodynamic properties of Ag8Ge1–xSnxSe6 solid solutions. Inorganic Materials. 2017;53(8): 786–796. https://doi.org/10.1134/S0020168517080027
Abbasova V. A., Alverdiyev I. J., Mashadiyeva L. F., Yusibov Y. A., Babanly M. B. Phase relations in the Cu8GeSe6-Ag8GeSe6 system and some properties of solid solutions. Azerbaijan Chemical Journal. 2017;1: 30–33.
Abbasova V. A., Alverdiyev I. J., Rahimoglu E., Mirzoyeva R. J., Babanly M. B. Phase relations in the Cu8GeS6-Ag8GeS6 system and some properties of solid solutions. Azerbaijan Chemical Journal. 2017;2: 25–29.
Alverdiev I. J., Abbasova V. A., Yusibov Yu. A., Babanly M. B. Thermodynamic properties of the Cu8GeS6-Ag8GeS6 solid solutions. Condensed Matter and Interphases. 2017;19(1): 22–26. (In Russ., abstract in Eng.). https://doi.org/10.17308/kcmf.2017.19/172
Centeno P., Alexandre M., Neves F., ... Mendes M. J. Copper-arsenic-sulfide thin-films from local raw materials deposited via RF co-sputtering for photovoltaics. Nanomaterials. 2022;12(19): 3268. https://doi.org/10.3390/nano12193268
McClary S. A., Taheri M. M., Blach D. D., … Agrawal R. Nanosecond carrier lifetimes in solution-processed enargite (Cu3AsS4) thin films. Applied Physics Letters. 2020;117(16): 162102. https://doi.org/10.1063/5.0023246
Studenyak I. P, Molnar Z. R., Makauz I. I. Deposition and optical absorption studies of Cu–As–S thin films. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2018;21(2): 167–172. https://doi.org/10.15407/spqeo21.02.167
Wallace S. K., Svane K. L., Huhn W. P., … Walsh A. Candidate photoferroic absorber materials for thin-film solar cells from naturally occurring minerals: enargite, stephanite, and bournonite. Sustainable Energy and Fuels. 2017;1(6): 1339–1350. https://doi.org/10.1039/C7SE00277G
Wallace S. K., Butler K. T., Hinuma Y., Walsh A. Finding a junction partner for candidate solar cell absorbers enargite and bournonite from electronic band and lattice matching. Journal of Applied Physics. 2019;125(5): 055703. https://doi.org/10.1063/1.5079485
Ballow R. B., Miskin K. K., Abu-Omar M. M. Synthesis and characterization of Cu3(Sb1–xAsx)S4 semiconducting nanocrystal alloys with tunable properties for optoelectronic device applications. Chemistry of Materials Journal. 2017;29(2): 573–578. https://doi.org/10.1021/acs.chemmater.6b03850
Alqahtani T., Khan M. D., Lewis D. J., Zhong X. L., O’Brien P. Scalable synthesis of Cu–Sb–S phases from reactive melts of metal xanthates and effect of cationic manipulation on structural and optical properties. Scientific Reports. 2021;11(1): 1–17. https://doi.org/10.1038/s41598-020-80951-5
Ornelas-Acosta R. E., Shaji S., Avellaneda D., Castillo G. A., Das Roy T. K., Krishnan B. Thin films of copper antimony sulfide: A photovoltaic absorber material. Materials Research Bulletin. 2015;61: 215–225. https://doi.org/10.1016/j.materresbull.2014.10.027
Vinayakumar V., Shaji S., Avellaneda D., Aguilar-Martínez J. A., Krishnan B. Copper antimony sulfide thin films for visible to near infrared photodetector applications. RSC Advances. 2018;8: 31055–31065. https://doi.org/10.1039/C8RA05662E
Van Embden J., Mendes J. O., Jasieniak J. J., Chesman A. S. R., Della Gaspera E. Solution-processed CuSbS2 thin films and superstrate solar cells with CdS/In2S3 buffer layers. ACS Applied Energy Materials Journal. 2020;3(8): 7885–7895. https://doi.org/10.1021/acsaem.0c01296
Chalapathi U., Bhaskar P. U., Sangaraju S., Al‑Asbahi B. A., Park S.-H. CuSbS2 thin films and solar cells produced from Cu/Sb/Cu stacks via sulfurization. Heliyon. 2024;10(6): e27504. https://doi.org/10.1016/j.heliyon.2024.e27504
Zhang M., Wang C., Chen C., Tang J. Recent progress in the research on using CuSbS2 and its derivative CuPbSbS3 as absorbers in case of photovoltaic devices. Front. Optoelectron. 2021;14(4): 450–458. https://doi.org/10.1007/s12200-020-1024-0
Riha S. C., Koegel A. A., Emery J. D., Pellin M. J., Martinson A. B. F. Low-temperature atomic layer deposition of CuSbS2 for thin-film photovoltaics. ACS Applied Materials and Interfaces Journal. 2017;9(5): 4667–4673. https://doi.org/10.1021/acsami.6b13033
Chalapathi U., Poornaprakash B., Ahn C. H., Park S.‑H. Two-stage processed CuSbS2 thin films for photovoltaics: effect of Cu/Sb ratio. Ceramics International. 2018;44(12): 14844–14849. https://doi.org/10.1016/j.ceramint.2018.05.117
Banu S., Ahn S. J., Ahn S. K., Yoon K., Cho A. Fabrication and characterization of cost-efficient CuSbS2 thin film solar cells using hybrid inks. Solar Energy Materials and Solar Cells. 2016;151: 14–23. https://doi.org/10.1016/j.solmat.2016.02.013
Raju N. P., Lahiri S., Thangavel R. Electronic and optical properties of CuSbS2 monolayer as a direct band gap semiconductor for optoelectronics. AIP Conference Proceedings. 2021;2352(1): 020001. https://doi.org/10.1063/5.0052990
Libório M. S., Queiroz J. C. A, Sivasankar S. M., Costa T. H. C., Cunha A. F., Amorim C. O. A review of Cu3BiS3 thin films: a sustainable and cost-effective photovoltaic material. Crystals. 2024;14(6): 524. https://doi.org/10.3390/cryst14060524
Nasonova D. I., Verchenko V. Yu., Tsirlin A. A., Shevelkov A. V. Low-temperature structure and thermoelectric properties of pristine synthetic tetrahedrite Cu12Sb4S13. Chemistry of Materials. 2016;28(18): 6621–6627. https://doi.org/10.1021/acs.chemmater.6b02720
Hathwar V. R., Nakamura A., Kasai H., … Nishibori E. Low-temperature structural phase transitions in thermoelectric tetrahedrite, Cu12Sb4S13, and Tennantite, Cu12As4S13. Crystal Growth and Design Journal. 2019;19(7): 3979–3988. https://doi.org/10.1021/acs.cgd.9b00385
Yaroslavzev A. A., Kuznetsov A. N., Dudka A. P., Mironov A. V., Buga S. G., Denisov V. V. Laves polyhedra in synthetic tennantite, Cu12As4S13, and its lattice dynamics. Journal of Solid State Chemistry. 2021;297: 122061. https://doi.org/10.1016/j.jssc.2021.122061
Tanishita T., Suekuni K., Nishiate H., Lee C.-H., Ohtaki M. A strategy for boosting thermoelectric performance of famatinite Cu3SbS4. Physical Chemistry Chemical Physics. 2020;22(4): 2081–2086. https://doi.org/10.1039/c9cp06233e
Du B., Zhang R., Chen K., Mahajan A., Reece M. J. The impact of lone-pair electrons on the lattice thermal conductivity of the thermoelectric compound CuSbS2. Journal of Materials Chemistry A. 2017;5(7): 3249–3259. https://doi.org/10.1039/C6TA10420G
Chetty R., Bali A., Mallik R. C. Tetrahedrites as thermoelectric materials: an overview. Journal of Materials Chemistry C. 2015;3(48): 12364–12378. https://doi.org/10.1039/c5tc02537k
Suekuni K., Takabatake T. Research update: Cu–S based synthetic minerals as efficient thermoelectric materials at medium temperatures. ACS Applied Materials and Interfaces Journal. 2016;4(10): 104503–104513. https://doi.org/10.1063/1.4955398
Levinsky P., Candolfi C., Dauscher A., Tobola J., Hejtmánek J., Lenoir B. Thermoelectric properties of the tetrahedrite–tennantite solid solutions Cu12Sb4−xAsxS13 and Cu10Co2Sb4−yAsyS13 (0 ≤ x, y ≤ 4). Physical Chemistry Chemical Physics. 2019;21(8): 4547–4555. https://doi.org/10.1039/C9CP00213H
Powell A. V. Recent developments in Earth-abundant copper-sulfide thermoelectric materials. Journal of Applied Physics. 2019;126(10): 100901. https://doi.org/10.1063/1.5119345
Hobbis D., Wang H., Martin J., Nolas G. S. Thermal properties of the very low thermal conductivity ternary chalcogenide Cu4Bi4M9 (M = S, Se). Physica Status Solidi (RRL) – Rapid Research Letters. 2020;14(8). https://doi.org/10.1002/pssr.202000166
Ye Z., Peng W., Wang F., … Wang J. Quasi-layered crystal structure coupled with point defects leading to ultralow lattice thermal conductivity in n-type Cu2.83Bi10Se16. ACS Applied Energy Materials. 2021;4(10): 11325–11335. https://doi.org/10.1021/acsaem.1c02154
Bhui A., Dutta M., Mukherjee M., … Biswas K. Ultralow thermal conductivity in Earth-abundant Cu1.6Bi4.8S8: anharmonic rattling of interstitial Cu. Chemistry of Materials. 2021;33(8): 2993–3001. https://doi.org/10.1021/acs.chemmater.1c00659
Aishwarya K., Maruthasalamoorthy S., Thenmozhi R., … Navamathavan R. Enhanced seebeck coefficient of Cu-Bi-S heterogeneous composite synthesized via solvothermal method. ECS Journal of Solid State Science and Technology. 2023;12(12): 123005. https://doi.org/10.1149/2162-8777/ad13b1
Mikuła A., Mars K., Nieroda P., Rutkowski P. Copper chalcogenide–copper tetrahedrite composites—a new concept for stable thermoelectric materials based on the chalcogenide system. Materials. 2021;14(10): 2635. https://doi.org/10.3390/ma14102635
Rikel M., Harmelin M., Prince A. Arsenic-copper-sulfur system. In: Ternary alloys. Petzow G., Effenberg G., Aldinger F. (eds.). Weinheim: VGH; 1994;11: 109–127.
Pfitzner A., Bernert T. The system Cu3AsS4-Cu3SbS4 and investigations on normal tetrahedral structures. Zeitschrift für Kristallographie - Crystalline Materials. 2004;219(1): 20–26. https://doi.org/10.1524/zkri.219.1.20.25398
Maske S., Skinner B. J. Studies of the sulfosalts of copper: I. phases and phase relations in the system Cu-As-S. Economic Geology. 1971;66: 901–918. https://doi.org/10.2113/gsecongeo.66.6.901
Makovicky E., Skinner B. J. Studies of the sulfosalts of copper: IV. Structure and twinning of sinnerite, Cu6As4S9. American Mineralogist. 1975;60: 998–1012.
Kurz G., Blachnik R. New aspects of the system Cu-As-S. Journal of the Less Common Metals. 1989;155: 1–8. https://doi.org/10.1016/0022-5088(89)90441-4
Prostakova V., Shishin D., Jak E. Thermodynamic optimization of the Cu–As–S system. Calphad. 2021;72: 102247. https://doi.org/10.1016/j.calphad.2020.102247
Gasanova Z. T., Mashadieva L. F., Yusibov Y. A., Babanly M. B. Phase equilibria in the Cu2S–Cu3AsS4–S system. Russian Journal of Inorganic Chemistry. 2017;62(5): 591–597. https://doi.org/10.1134/S0036023617050126
Gasanova Z. T., Aliev Z. S., Yusibov Y. A., Babanly M. B. Phase equilibria in the Cu-Cu2S-As system. Russian Journal of Inorganic Chemistry. 2012;57(8): 1158–1162. https://doi.org/10.1134/s0036023612050075
Babanly M. B., Gasanova Z. T., Mashadieva L. F., Zlomanov V. P., Yusibov Y. A. Thermodynamic study of the Cu-As-S system by EMF measurements with Cu4RbCl3I2 as a solid electrolyte. Inorganic Materials. 2012;48(3): 225–228. https://doi.org/10.1134/s0020168512020021
Mashadiyeva L. F., Babanly D. M., Hasanova Z. T., Yusibov Yu. A., Babanly M. B. Phase relations in the Cu-As-S system and thermodynamic properties of copper-arsenic sulfides. Journal of Phase Equilibria and Diffusion. 2024. (In press.)
Khvorostenko A. S., Kirilenko V. V., Popov B. I. Phase diagram of the As2Se3–Cu2Se system*. Inorganic Materials. 1972;8(1): 73–79. (In Russ.)
Blachnik R., Kurz G. Compounds in the system Cu2Se-As2Se3. Journal of Solid State Chemistry. 1984;55(2): 218–224. https://doi.org/10.1016/0022-4596(84)90267-6
Gambi L, Elli M. La chimica et I’industria. 1968;50: 94–98.
Cohen K., Rivet J., Dugue J. J. Description of the Cu – As – Se ternary system. Journal of Alloys and Compounds. 1995;224(2): 316–329. https://doi.org/10.1016/0925-8388(95)01534-5
Blachnik R., Gather B. Enthalpies of melting of some ternary ABX2-compounds. Zeitschrift fuer Naturforschung. 1972;327: 1417–1413. https://doi.org/10.1515/znb-1972-1129
Mashadieva L. F., Gasanova Z. T., Yusibov Yu. A., Babanly M. B. Phase equilibria in the Cu–Cu2Se–As system. Russian Journal of Inorganic Chemistry. 2017;62(5): 598–603. https://doi.org/10.1134/S0036023617050151
Mashadieva L. F., Gasanova Z. T., Yusibov Yu. A., Babanly M. B. Phase Equilibria in the Cu2Se–Cu3AsSe4–Se system and thermodynamic properties of Cu3AsSe4. Inorganic Materials. 2018;54(1): 8–16. https://doi.org/10.1134/S0020168518010090
Mashadiyeva L. F., Hasanova Z. T., Yusibov Yu. A., Babanly M. B. Phase equilibria in the Cu2Se–Cu3AsSe4–As2Se3 system. Azerbaijan Chemical Journal. 2024;3: 83–93. https://doi.org/10.32737/0005-2531-2024-3-83-93
Hasanova Z. T. Thermodynamic study of the CuAsSe2 compound by EMF method with solid electrolyte. New Materials, Compounds and Applications. 2021;5(3): 205–211. Available at: http://jomardpublishing.com/UploadFiles/Files/journals/NMCA/V5N3/Hasanova.pdf
Peccerillo E., Durose K. Copper–antimony and copper–bismuth chalcogenides —Research opportunities and review for solar photovoltaics. MRS Energy and Sustainability. 2018;5: 1–56. https://doi.org/10.1557/mre.2018.10
Cui J., Zhang Y., Hao X., Liu X., Shen Y. Thermodynamic calculation of S−Sb system and Cu−S−Sb system. Calphad. 2021;75: 102362. https://doi.org/10.1016/j.calphad.2021.102362
Cambi L., Elli M. Processi idrotermali, sintesi di solfosali da ossidi di metalli e metalloidi, nota II—Cuprosolfoantimoniti. La Chimica el’Industria, 1965;47: 136–147.
Kuliev R. A., Krestovnikov A. N., Glazov V. M. Synthesis and thermodynamic properties of alloys of the Cu2S-Sb2S3 system. Russian Journal of Physical Chemistry. 1969;43(12): 3063–3066.
Ilyasheva N. A. Study of the Cu2S-Sb2S3 system at 320–400 °C*. Inorganic Materials. 1963;9(10): 1677–1679. (In Russ.)
Mashadiyeva L. F., Mammadli P. R., Babanly D. M., Ashirov G. M., Shevelkov A. V., Yusibov Y. A. Solid-phase equilibrium in the Cu-Sb-S ternary system and thermodynamic properties of ternary phases. JOM. 2021;73(5): 1522-1530. https://doi.org/10.1007/s11837-021-04624-y
Mashadiyeva L. F., Babanly D. M., Poladova A. N., Yusibov Y. A., Babanly M. B. Liquidus surface and phase relations in the Cu-Sb-S system. In: Properties and Uses of Antimony. David J. Jenkins (ed.). Nova Science Publishers. 2022: 45-72. https://doi.org/10.52305/OJKB5395
Bryndzia L. T., Kleppa O. J. High-temperature reaction calorimetry of solid and liquid phases in part of the quasi-binary system Cu2S-Sb2S3. American Mineralogist. 1988;73(7-8): 707–713.
Kyono A., Kimata M. Crystal structures of chalcostibite (CuSbS2) and emplectite (CuBiS2): Structural relationship of stereochemical activity between chalcostibite and emplectite. American Mineralogist. 2005;90(1): 162–165 https://doi.org/10.2138/am.2005.1585
Lemoine P., Bourgès C., Barbier T., Nassif V., Cordier S., Guilmeau E. High temperature neutron powder diffraction study of the Cu12Sb4S13 and Cu4Sn7S16 phases. Journal of Solid State Chemistry. 2017;247: 83–89. https://doi.org/10.1016/j.jssc.2017.01.003
Pfitzner A. Cu3SbS3: Zur Kristallstruktur und Polymorphie. Zeitschrift für anorganische und allgemeine Chemie., 1994;620: 1992–1997. https://doi.org/10.1002/zaac.19946201126
Pfitzner A., Reiser S. Refinement of the crystal structures of Cu3PS4 and Cu3SbS4 and a comment on normal tetrahedral structures. Zeitschrift für Kristallographie. 2002;217(2): 51–54. https://doi.org/10.1524/zkri.217.2.51.20632
Golovey M. I., Tkachenko V. I., Rigan M. Yu., Stasyuk N. P. State diagram of the Cu2Sе-Sb2Sе3 system in the region of existence of the CuSbSе2 compound*. Inorganic Materials. 1990;26(5): 933–934. (In Russ)
Scott W, Conch J. R. Phase diagram and properties of Cu3SbSe4 and other A3IBVC4VI compounds. Materials Research Bulletin. 1973;8(10): 1257–1267. https://doi.org/10.1016/0025-5408(73)90164-5
Shtykova M. A., Molokeev M. S., Zakharov B. A., … Andreev O. V. Structure and properties of phases in the Cu2-XSe-Sb2Se3 system. The Cu2-XSe-Sb2Se3 phase diagram. Journal of Alloys and Compounds. 2022;906: 164384. https://doi.org/10.1016/j.jallcom.2022.164384
Liu R., Wang J., Cui D. Thermodynamic modeling of the Cu-Sb-Se system. Journal of Phase Equilibria and Diffusion. 2023;44: 687–703. https://doi.org/10.1007/s11669-023-01074-8
Pfitzner A. Crystal structure of tricopper tetraselenoantimonate (V), Cu3SbSe4 Zeitschrift für Kristallographie – Crystalline Materials. 1994;209: 685. https://doi.org/10.1524/zkri.1994.209.8.685
Chorba O., Filep M., Pogodin A., Malakhovska T., Sabov M. Crystals growth and refinement of the Cu3SbSe3 crystal structure. Ukrainian Chemistry Journal. 2022; 88(9): 25–33. https://doi.org/10.33609/2708-129X.88.09.2022.25-33
Schwarzmüller S., Amsler M., Goedecker S., Huppertz H. 4p-pavonite-type Cu1.8Sb5.4Se9: a one-dimensional copper ion conductor. SSRN. 2024. https://doi.org/10.2139/ssrn.4852905
Buhlman B. Untersuchungen im System Bi2S3-Cu2S und geologische Schlussfolgerungen. Neues Jahrbuch für Mineralogie, Monatshefte. 1971: 137–141.
Gather B., Blachnik R. Temperature-composition diagrams in the Cu2(VIb)-(Vb) sections of the ternary Cu-(Vb)-(VIb) systems (Vb = As, Sb, Bi, VIb = S, Se, Te). Journal of the Less Common Metals. 1976;48(2): 205–212. https://doi.org/10.1016/0022-5088(76)90003-5
Golovey M. I., Voroshilov Yu. V., Potoriy M. V. Study of Cu (Ag, Tl)-BV-Se systems. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 1985;28(1): 7–11.
Liautard B., Garcia J. C., Brun G., Tedenac J. C., Maurin M. Crystal structure of Cu(1+3x)Bi(5-x)X8 (X = S,Se) alloys. European Journal of Solid State and Inorganic Chemistry. 1990;27: 819–830. https://doi.org/10.1002/chin.199108005
Babanly N. B., Yusibov Yu. A., Aliyev Z. S., Babanly M. B. Phase equilibria in the system Cu-Bi-Se and thermodynamic properties of selenobismuthides of copper. Russian Journal of Inorganic Chemistry. 2010;55(9): 1471–1481. https://doi.org/10.1134/S0036023610090238
Prostakova V., Shishin D., Jak E. Thermodynamic optimization of the Cu–As–S system. Calphad. 2021;72: 102247. https://doi.org/10.1016/j.calphad.2020.102247
Sugaki A., Kitakaze A., Hayashi K. Synthesis of minerals in the Cu-Fe-Bi-S system under hydrothermal condition and their phase relations. Bulletin de Minéralogie. 1981;104: 484-495. https://doi.org/10.3406/bulmi.1981.7499
Filippou D., Germain P., Grammatikopoulos T. Recovery of metal values from copper—arsenic minerals and other related resources. Mineral Processing and Extractive Metallurgy Review. 2007;28: 247–298. https://doi.org/10.1080/08827500601013009
Zikanova T. A., Muldagalieva R. A., Kuzgibekova Kh., Isabaev S. M. Heat capacity and thermodynamic functions of copper orthoarsenate. High Temperatu. 2000;38(3): 492–493. https://doi.org/10.1007/bf02756014
Skinner B. J., Luce F. D., Makovicky E. Studies of the sulfosalts of copper: III Phases and phase relations in the system Cu-Sb-S. Economic Geology. 1972;67: 924–938. https://doi.org/10.2113/GSECONGEO.67.7.924
Babanly N. B., Yusibov Y. A., Mirzoyeva R. J., Shykhiyev Yu. M., Babanly M. B. Cu4RbCl3I2 solid superionic conductor in thermodynamic study of three-component copper chalcogenides. Russian Journal of Electrochemistry. 2009;45(4): 405–410. https://doi.org/10.1134/s1023193509040089
Tkachenko V. I., Regan M. Yu., Voroshilov Yu. V., Golovey M. I. In: Abstracts of reports. IV All-Union. Council on chemistry and technology of chalcogens and chalcogenides*. Karaganda; 1980. p. 200. (In Russ.)
Copyright (c) 2024 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.