Microstructural and hydrophilic properties of polyethylene terephthalate glycol polymer samples with different 3D printing patterns

Keywords: Polyethylene terephthalate-glycol PETG, Model drawings 3D printing, X-ray amorphous phase, Ordering of polymer chains, IR spectra, Intrastructural chemical bonds of the polymer, Hydrophilic surface

Abstract

The aim of the work is to study the influence of the 3-D printing process with the Hercules Original printer by sequentially applying polymer layers using the FDM (Fused Deposition Modeling) method on the microstructural and hydrophilic properties of polyethylene terephthalate glycol (PETG) samples with different printing patterns. X-ray phase analysis revealed the presence of a greater ordering of amorphous PETG polymer chains in printed samples, which occurs during thermal and mechanical impact on the initial filamentous sample during 3D printing. This manifests itself in the increase of relative intensity for the main diffraction peak of the amorphous PETG polymer by an order of magnitude for all of the samples with five different print patterns. At the same time, IR spectroscopy data revealed the preservation of all intrastructural chemical bonds of the polymer both in the original thread and in printed samples. Close contact angles of about q≈50° for all printed samples, which is much smaller than the right angle q=90°, show that the surfaces of all five printed PETG samples with different patterns are hydrophilic

Downloads

Download data is not yet available.

Author Biographies

Alexander S. Lenshin, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Dr. Sci. (Phys.–Math.),
Leading Researcher, Department of Solid State Physics
and Nanostructures, Voronezh State University
(Voronezh, Russian Federation)

Vera E. Frolova, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Phys.–Math.), Senior
Lecturer, Department of Solid State Physics and
Nanostructures, Voronezh State University (Voronezh,
Russian Federation)

Sergey S. Ivkov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Phys.–Math.), Senior
Electronics Engineer, Department of Solid State
Physics and Nanostructures, Voronezh State University
(Voronezh, Russian Federation)

Evelina P. Domashevskaya, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Dr. Sci. (Phys.–Math.),
Full Professor, Department of Solid State Physics and
Nanostructures, Voronezh State University (Voronezh,
Russian Federation)

References

Vidakis N., Petousis M., Velidakis E., Liebscher M., Mechtcherine V., Tzounis L. On the strain rate sensitivity of fused filament fabrication (FFF) processed PLA, ABS, PETG, PA6, and PP thermoplastic polymers. Polymers.2022;12: 2924. https://doi.org/10.3390/polym12122924

Silva A. L., Salvador G. M. da S., Castro S. V. F., Carvalho N. M. F., Munoz R. A. A. 3D printer guide for the development and application of electrochemical cells and devices. Frontiers in Chemistry. 2021;9: 684256. https://doi.org/10.3389/fchem.2021.684256

Vidakis N., Petousis M., Tzounis L., … Mountakis N. Sustainable additive manufacturing: mechanical response of polyethylene terephthalate glycol over multiple recycling processes. Materials. 2021;14: 1162. https://doi.org/10.3390/ma14051162

Gordeev E. G., Ananikov V. P. Widely accessible 3D printing technologies in chemistry, biochemistry and pharmaceutics: applications, materials and prospects. Russian Chemical Reviews. 2020;89(12): 1507–1561. https://doi.org/10.1070/rcr4980

Bex G. J. P., Ingenhut B. L. J., Cate T., Sezen M., Ozkoc G. Sustainable approach to produce 3D-printed continuous carbon fiber composites: A comparison of virgin and recycled PETG. Polymer Composites. 2021;42: 4253–4264. https://doi.org/10.1002/pc.26143

Schneevogt H., Stelzner K., Yilmaz B., Abali B. E., Klunker A., Völlmecke C. Sustainability in additive manufacturing: exploring the mechanical potential of recycled PET filaments. Composites and Advanced Materials. 2021; 30: 263498. https://doi.org/10.1177/26349833211000063

Latko-Durałek P., Dydek K., Boczkowska A. Thermal, rheological and mechanical properties of PETG/rPETG blends. Journal of Polymers and the Environment. 2019;27(11): 2600–2606. https://doi.org/10.1007/s10924-019-01544-6

Dolzyk G., Jung S. Tensile and fatigue analysis of 3D-printed polyethylene terephthalate glycol. Journal of Failure Analysis and Prevention. 2019;19: 511. https://doi.org/10.1007/s11668-019-00631-z

Hassan M. H., Omar A. M., Daskalakis E., … B´artolo P. The potential of polyethylene terephthalate glycol as biomaterial for bone tissue engineering. Polymers. 2020;12: 3045. https://doi.org/10.3390/polym12123045

Sobolev D. I., Proyavin M. D., Parshin V. V., Belousov V. I., Ryabov A. V. Broadband, low-reflection microwave windows manufactured using 3D printing*. In: X All-Russian Scientific and Technical Conference “Microwave Electronics and Microelectronics”. Collection of reports. Saint-Petersburg, 31 of May – 4 of June, 2021. Saint Petersburg. St. Petersburg: St. Petersburg State Electrotechnical University “LETI” Publ.; 2021. p. 52. (In Russ.)

Kiselev M. G., Savich V. V., Pavich T. P. Determination of contact wetting angle on flat surfaces. Vestnik BNTU. 2006;1: 38. (In Russ., abstract in Eng.). Available at: https://www.elibrary.ru/item.asp?id=21398120

Elesina V. V. Contact angle. Guidelines. Altai State Technical University named after. I. I. Polzunov Publ.; 2019: 22. (In Russ.)

Loskot J., Jezbera D., Bušovský D., … Zubko M. Influence of print speed on the microstructure, morphology, and mechanical properties of 3D-printed PETG products. Polymer Testing. 2023;123: 108055. https://doi.org/10.1016/j.polymertesting.2023.108055

ICDD Card: 04-003-0648 tetragonal TiO2 15. Pereira A. P. dos S., da Silva M. H. P., Júnior É. P. L., Paula A. dos S., Tommasini F. J. Processing and characterization of PET composites reinforced with geopolymer concrete waste. Мaterials Research. 2017; 20(suppl2): 411–420. https://doi.org/10.1590/1980-5373-mr-2017-0734

Published
2024-01-31
How to Cite
Lenshin, A. S., Frolova, V. E., Ivkov, S. S., & Domashevskaya, E. P. (2024). Microstructural and hydrophilic properties of polyethylene terephthalate glycol polymer samples with different 3D printing patterns. Condensed Matter and Interphases, 26(1), 78-87. https://doi.org/10.17308/kcmf.2024.26/11810
Section
Original articles

Most read articles by the same author(s)