Influence of a Weak Pulsed Electromagnetic Field on the Atomic Structure of Natural Aluminosilicates Clinoptilolite, Montmorillonite and Palygorskit
Abstract
Natural and artifi cial aluminosilicates are relevant research objects due to their wide using in medicine, food and chemical industries, and in agriculture. The aim of the work is to study the possible changes under the infl uence of a weak pulsed electromagnetic fi eld of the atomic structure of powdery samples of three minerals clinoptilolite KNa2Ca2(Si29Al7)О72·24H2O, montmorillonite Ca0.2 (AlMg)2Si4O10(OH)2·4H2O and palygorskite MgAlSi4O10(OH)·4H2O, belonging to the group of natural
aluminosilicates, in which silicon-oxygen and aluminum-oxygen tetrahedra are linked by a common oxygen atom. The results of studies by X-ray diffraction and ultra-soft X-ray emission spectroscopy showed that 48 hours after exposure of a weak pulsed electromagnetic fi eld to 71 mT for 30 seconds, the atomic and electronic subsystems of mineral samples still kept changes.
The infl uence of a weak pulsed electromagnetic fi eld on the atomic structure of minerals manifested itself differently in three samples in the form of one or two additional weak superstructural lines in diffractograms. The infl uence of a weak pulsed electromagnetic fi eld on the local environment of silicon by oxygen atoms in silicon-oxygen tetrahedra was manifested in the form of changes in the fi ne structure of the ultra-soft X-ray emission spectroscopy silicon Si L2,3 spectra, indicating the restoration of stoichiometry of silicon suboxides SiO1.8 in the composition of aluminosilicates of the initial powders
into stoichiometry equal to or close to silicon dioxide SiO2, in all three minerals.
REFERENCES
- Hack E. Z., Rick T. R. O vliyanii postoyannogo magnitnogo polya na kinetiku dvizheniya ionov v vodnykh rastvorakh sil’nykh elektrolitov [On the effectof a constant magnetic fi eld on the kinetics of ion motion in aqueous solutions of strong electrolytes]. Reports of the Academy of Sciences of the USSR. 1967;175(4): 856–858. (In Russ.)
- Martynova O. I., Gusev B. T., Leontiev E. A. K voprosu o mekhanizme vliyaniya magnitnogo polya na vodnye rastvory solei [To the question of the mechanism of the infl uence of the magnetic fi eld on aqueous solutions of salts]. Uspekhi FizicheskikhNauk. Успехи физических наук. 1969;98: 25–31. (In Russ.)
- Chesnokova L. N. Voprosy teorii i praktiki magnitnoi obrabotki vody i vodnykh sistem [Questions of the theory and practice of magnetic treatment of water and watersystems]. Moscow: Tsvetmetinformatsiya Publ.; 1971. 75 с.
- Kronenberg K. Experimental evidence for the effects of magnetic fields on moving water. IEEE Transactions on Magnetics. 1985;21(5); 2059–2061. DOI: https://doi.org/10.1109/tmag.1985.1064019
- Kotova D. L., Artamonova M. I., Krysanova T. A., Vasilenko M. S., Novikova L. A., Belchinskaya L. I., Petukhova G. A. The effect of a pulsed magnetic field on the hydration properties of clinoptilolite and glauconite. Protection of Metals and Physical Chemistry of Surfaces. 2018;54(4): 598–602. DOI: https://doi.org/10.1134/S2070205118030073
- Vernadsky V. I., Kurbatov S. M. Zemnye silikaty, alyumosilikaty i ikh analogi [Earth silicates, aluminosilicates and their analogues. 4th ed.]. Moscow – Leningrad Publ.; 1937. 378 p.
- CPDS – International Center for Diffraction Data. PDF Card 2012 00-039-1383
- CPDS – International Center for Diffraction Data. PDF Card 2012 00-013-0135
- CPDS – International Center for Diffraction Data. PDF Card 2012 00-029-0855
- Zimkina T. M., Fomichev V. A. Ul’tramyagkaya rentgenovskaya spektroskopiya [Ultra-soft x-ray spectroscopy]. Leningrad: Leningrad State University Publ.; 1971. 132 p.
- Shulakov A. S., Stepanov A. P. Glubina generatsii ul’tramyagkogo rentgenovskogo izlucheniya v SiO2 [Ultrasoft X-ray Generation Depth in SiO2]. Physics, Chemistry and Mechanics of Surfaces. 1988;10: 146–150. (in Russ.)
- Terekhov V. A., Trostyansky S. N., Seleznev A. E., Domashevskaya E. P. Izmenenie plotnosti lokalizovannykh sostoyanii v poverkhnostnykh sloyakh amorfnogo gidrogenezirovannogo kremniya pri vakuumtermicheskikh otzhigakh [The change in the density of localized states in the surface layers ofamorphous hydrogenated silicon during vacuum thermal annealing] Physics, Chemistry and Mechanics of Surfaces. 1988;5: 74-80.
- Domashevskaya E. P., Peshkov Y. A , Terekhov V. A., Yurakov Y. A., Barkov K. A. Phase composition of the buried silicon interlayers in the amorphous multilayer nanostructures [(Co45Fe45Zr10)/a-Si:H]41 and [(Co45Fe45Zr10)35(Al2O3)65/a-Si:H]41. Surf. Interface Anal. 2018;50(12–13): 1265–1270. DOI: https://doi.org/10.1002/sia.6515
- Manukovsky E. Yu. Elektronnaya struktura, sostav i fotolyuminestsentsiya poristogo kremniya [ Electronicstructure , composition andphotoluminescence of porous]. Abstract of the candidate’s thesis. Voronezh: Voronezh State University; 2000. 16 p.
- Domashevskaya E. P., Terekhov V. A., Turishchev S. Yu., Przhimov A. S., Kharin A. N., Parinova E. V, Rumyantseva N. A., Usoltseva D. S., Fomenko Yu. L., Belenko S. V. Atomic and electronic structure of amorphous and nanocrystalline layers of semi-insulating silicon obtained by chemical deposition at low pressure. Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques. 2015;6(6): 1228–1236. DOI: https://doi.org/10.1134/S1027451015060257