Structural Rearrangement of a-SiOx:H Films with Pulse Photon Annealing
Abstract
Amorphous SiOx films with silicon nanoclusters are a new interesting material from the standpoint of the physics, technology, and possible practical applications, since such films can exhibit photoluminescence due to size quantization. Moreover, the optical properties of these structures can be controlled by varying the size and the content of silicon nanoclusters in the SiOx film, as well as by transforming nanoclusters into nanocrystals by means of high-temperature annealing. However, during the annealing of nonstoichiometric silicon oxide, significant changes can occur in the phase composition and the structure of the films. The results of investigations on the crystallization of silicon nanoclusters in a SiOx matrix have shown
that, even a very fast method of annealing using PPA leads to the formation of large silicon crystallites. This also causes the crystallization of at least a part of the oxide phase in the form of silicon hydroxide H6O7Si2. Moreover, in films with an initial content of pure silicon nanoclusters ≤ 50%, during annealing a part of the silicon is spent on the formation of oxide, and part of it is spent on the formation of silicon crystals. While in a film with an initial concentration of silicon nanoclusters ≥ 53%, on the contrary, upon annealing, there occurs a partial transition of silicon from the oxide phase to the growth of
Si crystals
Reference
1. Undalov Y. K., Terukov E. I., Silicon nanoclusters
ncl-Si in a hydrogenated amorphous silicon suboxide
matrix a-SiOx:H (0 < x < 2). Semiconductors. 2015;49(7):
867- 878. DOI: https://doi.org/10.1134/S1063782615070222
2. Kim K. H., Johnson E. V., Kazanskii A. G.,
Khenkin M. V., Roca P. Unravelling a simple method
for the low temperature synthesis of silicon
nanocrystals and monolithic nanocrystalline thin
films. Scientific Reports. 2017;7(1) DOI: https://doi.org/10.1038/srep40553
3. Undalov Y. K., Terukov E. I., Trapeznikova I. N.
Formation of ncl-Si in the amorphous matrix a-SiOx-:H located near the anode and on the cathode, using
a time-modulated DC plasma with the (SiH4–Ar–O2)
gas phase (Co2 = 21.5 mol%). Semiconductors.
2019;53(11): 1514–1523. DOI: https://doi.org/10.1134/S1063782619110228
4. Terekhov V. A., Terukov E. I., Undalov Y. K.,
Parinova E. V., Spirin D. E., Seredin P. V., Minakov D. A.,
Domashevskaya E. P. Composition and optical properties
of amorphous a-SiOx:H films with silicon nanoclusters.
Semiconductors. 2016;50(2): 212–216. DOI:
https://doi.org/10.1134/S1063782616020251
5. Terekhov V. A., Turishchev S. Y., Kashkarov V. M.,
Domashevskaya E. P., Mikhailov A. N., Tetel’baum D. I.
Silicon nanocrystals in SiO2 matrix obtained by ion
implantation under cyclic dose accumulation. Physica
E: Low-dimensional Systems and Nanostructures.
2007;38(1-2): 16–20. DOI: https://doi.org/10.1016/j.physe.2006.12.030
6. Terekhov V. A., Turishchev S. Y., Pankov K. N.,
Zanin I. E., Domashevskaya E. P., Tetelbaum D. I.,
Mikhailov A. N., Belov A. I., Nikolichev D. E., Zubkov S. Y.
XANES, USXES and XPS investigations of electron
energy and atomic structure peculiarities of the silicon
suboxide thin film surface layers containing Si nanocrystals.
Surface and Interface Analysis. 2010;42(6-7):
891–896. DOI: https://doi.org/10.1002/sia.3338
7. Terekhov V. A., Turishchev S. Y., Pankov K. N.,
Zanin I. E., Domashevskaya E. P., Tetelbaum, Mikhailov
A. N., Belov A. I., Nikolichev D. E. Synchrotron investigations
of electronic and atomic-structure peculiarities
for silicon-oxide films’ surface layers containing
silicon nanocrystals. Journal of Surface Investigation.
X-ray, Synchrotron and Neutron Techniques. 2011;5(5):
958–967. DOI: https://doi.org/10.1134/S102745101110020X
8. Sato K., Izumi T., Iwase M., Show Y., Morisaki H.,
Yaguchi T., Kamino T. Nucleation and growth of nanocrystalline
silicon studied by TEM, XPS and ESR.
Applied Surface Science. 2003;216 (1-4): 376–381. DOI:
https://doi.org/10.1016/S0169-4332(03)00445-8
9. Ledoux G., Gong J., Huisken F., Guillois O., Reynaud
C. Photoluminescence of size-separated silicon
nanocrystals: Confirmation of quantum confinement.
Applied Physics Letters. 2002;80(25): 4834–4836. DOI:
https://doi.org/10.1063/1.1485302
10. Patrone L., Nelson D., Safarov V. I., Sentis M.,
Marine W., Giorgio S. Photoluminescence of silicon
nanoclusters with reduced size dispersion produced
by laser ablation. Journal of Applied Physics. 2000;87(8):
3829–3837. DOI: https://doi.org/10.1063/1.372421
11. Takeoka S., Fujii M., Hayashi S. Size-dependent
photoluminescence from surface-oxidized Si nanocrystals
in a weak confinement regime. Physical Review
B. 2000;62(24): 16820–16825. DOI: https://doi.org/10.1103/PhysRevB.62.16820
12. Ievlev V. M. Activation of solid-phase processes
by radiation of gas-discharge lamps, Russian Chemical
Reviews. 2013;82(9): 815–834. DOI: https://doi.org/10.1070/rc2013v082n09abeh004357
13. Zimkina T. M., Fomichev V. A. Ultrasoft X-Ray
spectroscopy. Leningrad: Leningrad State University
Publ.; 1971. 132 p.
14. Wiech G., Feldhütter H. O., Šimůnek A. Electronic
structure of amorphous SiOx:H alloy films
studied by X-ray emission spectroscopy: Si K, Si L, and
O K emission bands. Physical Review B. 1993;47(12):
6981–6989. DOI: https://doi.org/10.1103/Phys-RevB.47.6981
15. Domashevskaya E. P., Peshkov Y. A., Terekhov
V. A., Yurakov Y. A., Barkov K. A., Phase composition
of the buried silicon interlayers in the amorp
h o u s m u l t i l a y e r n a n o s t r u c t u r e s
[(Co45Fe45Zr10)/a-Si:H]41 and [(Co45Fe45Zr10)
35(Al2O3)65/a-Si:H]41. Surface and Interface Analysis.
2018;50(12-13): 1265–1270. DOI: https://doi.org/10.1002/sia.6515
16. Terekhov V. A., Kashkarov V. M., Manukovskii
E. Yu., Schukarev A. V., Domashevskaya E. P.
Determination of the phase composition of surface
layers of porous silicon by ultrasoft X-ray spectroscopy
and X-ray photoelectron spectroscopy techniques.
Journal of Electron Spectroscopy and Related Phenomena.
2001;114–116: 895–900. DOI: https://doi.org/10.1016/S0368-2048(00)00393-5
17. JCPDS-International Centre for Diffraction
Data ICDD PDF-2, (n.d.) card No 01-077-2110.
18. JCPDS-International Centre for Diffraction
Data ICDD PDF-2, (n.d.) card No 00-050-0438.
Downloads
Copyright (c) 2020 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.