Formation of silver nanocrystals in Ag-Si composite films obtained by ion beam sputtering

  • Konstantin A. Barkov Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation https://orcid.org/0000-0001-8290-1088
  • Vladimir A. Terekhov Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation https://orcid.org/0000-0002-0668-4138
  • Dmitry N. Nesterov Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation https://orcid.org/0000-0002-2462-7153
  • Kirill E. Velichko Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation; Research Institute of Electronic Technology, 5 Staryh Bolshevikov st., Voronezh 394033, Russian Federation
  • Sergey A. Ivkov Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation https://orcid.org/0000-0003-1658-5579
  • Nikita S. Buylov Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation; Research Institute of Electronic Technology, 5 Staryh Bolshevikov st., Voronezh 394033, Russian Federation https://orcid.org/0000-0003-1793-4400
  • Sergey V. Kannykin Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation https://orcid.org/0000-0001-8756-5722
  • Igor E. Zanin Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation
  • Boris L. Agapov Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation; Research Institute of Electronic Technology, 5 Staryh Bolshevikov st., Voronezh 394033, Russian Federation
  • Sergey V. Rodivilov Research Institute of Electronic Technology, 5 Staryh Bolshevikov st., Voronezh 394033, Russian Federation
  • Evgenii S. Kersnovsky Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation https://orcid.org/0009-0006-8215-6077
  • Ivan V. Polshin Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation https://orcid.org/0009-0006-8215-6077
  • Stanislav V. Ryabtsev Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation https://orcid.org/0000-0001-7635-8162
  • Margarita V. Grechkina Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation https://orcid.org/0000-0002-7873-8625
  • Aleksandr V. Sitnikov Voronezh State Technical University, 84 20 letiya Oktyabrya st., Voronezh 394006, Russian Federation https://orcid.org/0000-0002-9438-9234
Keywords: Silver nanoparticles, Ag NPs, Ag-Si films, Ultra-soft X-ray emission spectroscopy, Ion-beam sputtering

Abstract

Nanostructured composite films based on Ag-Si containing silver nanoparticles are used as a material for SERS (Surfaceenhanced Raman spectroscopy) substrates, plasmonic back reflector, nanoplasmonic sensors, nonlinear optics devices, memristor structures, etc. Due to the widespread use of nanocomposite films based on Ag-Si, there is a need to develop simple and affordable methods for their production compatible with semiconductor technology. Therefore, this work is devoted to the production of an Ag80Si20 nanocomposite film with a high silver content (80 at.%) by ion-beam sputtering with simultaneous control of the morphology, structure, phase composition and electrical properties of the manufactured sample. As a result of complex studies using X-ray diffraction, ultra-soft X-ray emission spectroscopy, SEM and AFM
microscopy, it was found that the film is a nanocomposite material based on silver nanoparticles with an average size of ~15÷30 nm. At the same time, some silver nanoparticles are in direct contact, while some Ag nanoparticles are isolated from each other by a shell of silicon dioxide SiO2 and amorphous silicon a-Si. Such a nanogranulated structure of the Ag80Si20 film causes the presence in the test sample of the effect of switching from a high-resistance state (880 Ohm) to a lowresistance state (~1 Ohm) under the action of a voltage of ~ 0.2 V. As a result of the formation of conductive filaments (CF) of Ag atoms in the dielectric layer between the silver granules

Downloads

Download data is not yet available.

Author Biographies

Konstantin A. Barkov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Phys.-Math.),
Head of the Laboratory, Department of Solid State
Physics and Nanostructures, Voronezh State University
(Voronezh, Russian Federation)

Vladimir A. Terekhov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Dr. Sci. (Phys.-Math.), Full
Professor, Department of Solid State Physics and
Nanostructures, Voronezh State University (Voronezh,
Russian Federation)

Dmitry N. Nesterov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Phys.-Math.),
Assistant Professor, Department of Solid State Physics
and Nanostructures, Voronezh State University
(Voronezh, Russian Federation)

Kirill E. Velichko, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation; Research Institute of Electronic Technology, 5 Staryh Bolshevikov st., Voronezh 394033, Russian Federation

Process Engineer, Research Institute of Electronic Technology (Voronezh, Russian Federation)

Sergey A. Ivkov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Phys.-Math.), Leading
Electronics Engineer, Department of Solid State
Physics and Nanostructures, Voronezh State University
(Voronezh, Russian Federation)

Nikita S. Buylov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation; Research Institute of Electronic Technology, 5 Staryh Bolshevikov st., Voronezh 394033, Russian Federation

Cand. Sci. (Phys.-Math.), Assistant
Professor, Department of Solid State Physics and
Nanostructures, Voronezh State University; Engineer,
Research Institute of Electronic Technology (Voronezh,
Russian Federation)

Sergey V. Kannykin, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Phys.-Math.),
Assistant Professor, Department of Materials Science
and the Industry of Nanosystems, Voronezh State
University; Engineer, Research Institute of Electronic
Technology (Voronezh, Russian Federation)

Igor E. Zanin, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Phys.-Math.), Assistant
Professor, General Physics Department, Voronezh
State University (Voronezh, Russian Federation)

Boris L. Agapov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation; Research Institute of Electronic Technology, 5 Staryh Bolshevikov st., Voronezh 394033, Russian Federation

Cand. Sci. (Tech.), Centre for
Collective Use of Scientific Equipmen, Voronezh State
University, Research Institute of Electronic Technology
(Voronezh, Russian Federation)

Sergey V. Rodivilov, Research Institute of Electronic Technology, 5 Staryh Bolshevikov st., Voronezh 394033, Russian Federation

Leading Process Engineer,
Research Institute of Electronic Technology (Voronezh,
Russian Federation)

Evgenii S. Kersnovsky, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

student, Department of Solid
State Physics and Nanostructures, Voronezh State
University (Voronezh, Russian Federation)

Ivan V. Polshin, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

student, Department of Solid
State Physics and Nanostructures, Voronezh State
University (Voronezh, Russian Federation)

Stanislav V. Ryabtsev, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Dr. Sci. (Phys.-Math.),
Leading Researcher, Joint Scientific and Educational
Laboratory “Atomic and Electronic Structure of
Functional Materials” of Voronezh State University
and the National Research Center “Kurchatov
Institute”, Voronezh State University (Voronezh,
Russian Federation)

Margarita V. Grechkina, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Leading Electronics
Engineer, Departments of Semiconductor Physics and
Microelectronics, Voronezh State University (Voronezh,
Russian Federation)

Aleksandr V. Sitnikov, Voronezh State Technical University, 84 20 letiya Oktyabrya st., Voronezh 394006, Russian Federation

Dr. Sci. (Phys.-Math.), Full
Professor, Departments of Solid-State Electronics,
Voronezh State Technical University (Voronezh,
Russian Federation)

References

Dzhagan V., Mazur N., Kapush O., … Yukhymchuk V. Self-organized SERS substrates with efficient analyte enrichment in the hot Spots. ACS Omega. 2024;9(4): 4819–4830. https://doi.org/10.1021/acsomega.3c08393

Ermina A. A., Solodovchenko N. S., Levitskii V. S., … Zharova Y. A. Plasmonic disordered array of hemispherical AgNPs on SiO2@c-Si: their optical and SERS properties. Materials Science in Semiconductor Processing. 2024;169: 107861. https://doi.org/10.1016/j.mssp.2023.107861

Yang Z. W., Meng L. Y., Lin J. S., … Li J. F. 3D hotspots platform for plasmon enhanced Raman and second harmonic generation spectroscopies and quantitative analysis. Advanced Optical Materials. 2019;7: 3–8. https://doi.org/10.1002/adom.201901010

Morawiec S., Mendes M. J., Priolo F., Crupi I. Plasmonic nanostructures for light trapping in thinfilm solar cells. Materials Science in Semiconductor Processing. 2019;92: 10–18. https://doi.org/10.1016/j.mssp.2018.04.035

Atwater H. A., Polman A. Plasmonics for improved photovoltaic devices. Nature Materials. 2010;9: 205–213. https://doi.org/10.1038/nmat2629

Cesca T., Michieli N., Kalinic B., Balasa I. G., Rangel-Rojo R., Reyes-Esqueda J. A., Mattei G. Bidimensional ordered plasmonic nanoarrays for nonlinear optics, nanophotonics and biosensing applications. Materials Science in Semiconductor Processing. 2019; 92: 2–9. https://doi.org/10.1016/j.mssp.2018.03.025

Lippitz M., Van Dijk M. A., Orrit M. Third-harmonic generation from single gold nanoparticles. Nano Letters. 2005;5: 799–802. https://doi.org/10.1021/nl0502571

Sato R., Ohnuma M., Oyoshi K., Takeda Y. Experimental investigation of nonlinear optical properties of Ag nanoparticles: Effects of size quantization. Physical Review B. 2014;90: 1–6. https://doi.org/10.1103/PhysRevB.90.125417

Polat D. B., Eryilmaz L., Keles O. Generation of agsi film by magnetron sputtering for use As anodes in lithium ion batteries. ECS Meeting Abstracts. 2015;MA2015-01: 514–514. https://doi.org/10.1149/ma2015-01/2/514

Liu B., Xu G., Jin C., … Zhou L. The Si/Ag2Si/Ag particles with the enhanced mechanical contact as anode material for lithium ion batteries. Materials Letters. 2020;280: 128536. https://doi.org/10.1016/j.matlet.2020.128536

Li S., Ma W., Luo B., … Wang L. High-performance porous silicon/nanosilver anodes from industrial low-grade silicon for lithium-ion batteries. ACS Applied Materials and Interfaces. 2020;12: 49080–49089. https://doi.org/10.1021/acsami.0c14157

Li R., Yang H., Zhang Y., … Huang P. Physical mechanisms and enhancement of endurance degradation of SiOx:Ag-based volatile memristors. 2023 Silicon Nanoelectronics Workshop (SNW). 2023;40: 117–118. https://doi.org/10.23919/SNW57900.2023.10183918

Ding X., Huang P., Zhao Y., Feng Y., Liu L. Understanding of the volatile and nonvolatile switching in Ag-based memristors. IEEE Transactions on Electron Devices. 2022;69: 1034–1040. https://doi.org/10.1109/TED.2022.3144373

Sarkar D. K., Cloutier F., El Khakani M. A. Electrical switching in sol-gel derived Ag-SiO2 nanocomposite thin films. Journal of Applied Physics. 2005;97: 2–7. https://doi.org/10.1063/1.1870112

Dias C., Lv H., Picos R., …Ventura J. Bipolar resistive switching in Si/Ag nanostructures. Applied Surface Science. 2017;424: 122–126. https://doi.org/10.1016/j.apsusc.2017.01.140

Cha J. H., Yang S. Y., Oh J., … Choi S. Y. Conductive-bridging random-access memories for emerging neuromorphic computing. Nanoscale. 2020;12: 14339–14368. https://doi.org/10.1039/d0nr01671c

Sokolov A. S., Abbas H., Abbas Y., Choi C. Towards engineering in memristors for emerging meCondensed ory and neuromorphic computing: a review. Journal of Semiconductors. 2021;42(1): 013101. https://doi.org/10.1088/1674-4926/42/1/013101

Raeis-Hosseini N., Lim S., Hwang H., Rho J. Reliable Ge2Sb2Te5-integrated high-density nanoscale conductive bridge random access memory using facile nitrogen-doping strategy. Advanced Electronic Materials. 2018; 4(11). https://doi.org/10.1002/aelm.201800360

Cuenya B. R. Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects. Thin Solid Films. 2010;518: 3127–3150. https://doi.org/10.1016/j.tsf.2010.01.018

Semenova A.A., Semenov A.P., Goodilin E.A., Semenova I.A. Synthesis of Plasmonic Photonic Crystal SiO2–Ag Nanostructures by Ion Beam Deposition of Silver Clusters onto Silica Microspheres. Bulletin of the Russian Academy of Sciences: Physics. 2019; 83: 1415–1418. https://doi.org/10.3103/S1062873819110200

Lunin L.S., Chebotarev S.N., Pashchenko A.S., Bolobanova L.N. Ion beam deposition of photoactive nanolayers for silicon solar cells. Inorganic Materials. 2012; 48: 439–444. https://doi.org/10.1134/S0020168512050111

Saad A. M., Fedotov A. K., Fedotova J. A., … Sitnikov A. V. Characterization of (Co0.45Fe0.45Zr 0.10)x(Al2O3)1-x nanocomposite films applicable as spintronic materials. Physica Status Solidi C. 2006;3: 1283–1290. https://doi.org/10.1002/pssc.200563111

Svito I.,Fedotov A. K., Koltunowicz T. N., Saad A. Hopping of electron transport in granular Cux(SiO2)1-x nanocomposite films deposited by ionbeam sputtering. Journal of Alloys and Compounds. 2015;615: S371–S374. https://doi.org/10.1016/j.jallcom.2014.01.136

Agarwal B. K. Soft X-ray spectroscopy. X-Ray Spectroscopy. Springer, Berlin, Heidelberg; 1979, p. 311–330 https://doi.org/10.1007/978-3-662-14469-5_7

Zimmermann P., Peredkov S., Abdala P. M., … van Bokhoven J. A. Modern X-ray spectroscopy: XAS and XES in the laboratory. Coordination Chemistry Reviews. 2020;423: 213466. https://doi.org/10.1016/j.ccr.2020.213466

Terekhov V. A., Kashkarov V. M., Manukovskii E. Yu., Schukarev A. V., Domashevskaya E. P. Determination of the phase composition of surface layers of porous silicon by ultrasoft X-ray spectroscopy and X-ray photoelectron spectroscopy techniques. Journal of Electron Spectroscopy and Related Phenomena. 2001;114–116: 895–900. https://doi.org/10.1016/S0368-2048(00)00393-5

Domashevskaya E. P., Peshkov Y. A., Terekhov V. A., Yurakov Y. A., Barkov K. A. Phase composition of the buried silicon interlayers in the amorphous multilayer nanostructures [(Co45Fe45Zr10)/a-Si:H]41 and [(Co45Fe45Zr10)35(Al2O3)65/a-Si:H]41. Surface and Interface Analysis. 2018;50: 1265–1270. https://doi.org/10.1002/sia.6515

Langford J. I., Wilson A. J. C. Scherrer after sixty years: a survey and some new results in the determination of crystallite size. Journal of Applied Crystallography. 1978;11: 102–113. ttps://doi.org/10.1107/S0021889878012844

Kovba L. M., Trunov V. K. X-ray phase analysis. Moscow: Moscow University Publ.; 1976, 232 p. (In Russ.)

Jain R. A review on the development of XRD in ferrite nanoparticles. Journal of Superconductivity and Novel Magnetism. 2022;35: 1033–1047. https://doi.org/10.1007/s10948-022-06213-9

Wiech G., Feldhütter H. O., Šimůnek A. Electronic structure of amorphous SiOx:H alloy films studied by X-ray emission spectroscopy: Si K, Si L, and O K emission bands. Physical Review B. 1993;47: 6981–6989. https://doi.org/10.1103/PhysRevB.47.6981

Nekrashevich S. S., Gritsenko V. A. Electronic structure of silicon dioxide (a review). Physics of the Solid State. 2014;56(2): 207–222. https://doi.org/10.1134/s106378341402022x

Gladskikh I. A., Gushchin M. G., Vartanyan T. A. Resistance switching in Ag, Au, and Cu films at the percolation threshold. Semiconductors. 2018;52: 671–674. https://doi.org/10.1134/S1063782618050093

Vartanyan T. A., Gladskikh I. A., Leonov N. B., Przhibel’skii S. G. Fine structures and switching of electrical conductivity in labyrinth silver films on sapphire. Physics of the Solid State. 2014;56: 816–822. https://doi.org/10.1134/S1063783414040349

Published
2024-07-12
How to Cite
Barkov, K. A., Terekhov, V. A., Nesterov, D. N., Velichko, K. E., Ivkov, S. A., Buylov, N. S., Kannykin, S. V., Zanin, I. E., Agapov, B. L., Rodivilov, S. V., Kersnovsky, E. S., Polshin, I. V., Ryabtsev, S. V., Grechkina, M. V., & Sitnikov, A. V. (2024). Formation of silver nanocrystals in Ag-Si composite films obtained by ion beam sputtering. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 26(3), 407-416. https://doi.org/10.17308/kcmf.2024.26/12215
Section
Original articles

Most read articles by the same author(s)