Формирование нанокристаллов серебра в композитных пленках Ag-Si, полученных ионно-лучевым распылением
Аннотация
Наноструктурированные композитные пленки на основе Ag-Si, содержащие наночастицы серебра, используются в качестве материала SERS-подложек (Surface-enhanced Raman spectroscopy), плазмонных отражателей, наноплазмонных сенсоров, устройств нелинейной оптики, мемристорных структур и т. д. Широкое применение нанокомпозитных пленок на основе Ag-Si приводит к необходимости развития простых и доступных методов их получения, совместимых с полупроводниковой технологией. Поэтому настоящая работа посвящена получению нанокомпозитной пленки Ag80Si20 с высоким содержанием серебра (80 ат. %) методом ионно-лучевого распыления с одновременным контролем морфологии, структуры, фазового состава и электрических свойств получаемого образца.
В результате комплексных исследований рентгеновской дифракции, ультрамягкой рентгеновской эмиссионной спектроскопии, РЭМ и АСМ микроскопии установлено, что пленка представляет собой нанокомпозитный материал на основе серебряных наночастиц со средним размером ~15÷30 нм. При этом некоторые наночастицы серебра находятся в непосредственном контакте, в то время как часть Ag наночастиц изолированы друг от друга оболочкой из диоксида кремния SiO2 и аморфного кремния a-Si.
Такая наногранулированная структура пленки Ag80Si20 обуславливает наличие в исследуемом образце эффекта переключения из высокоомного состояния (880 Ом) в низкоомное (~1 Ом) под действием напряжения ~0.2 В в результате образования проводящих мостиков (филаментов) из атомов Ag в слое диэлектрика между серебряным гранулами
Скачивания
Литература
Dzhagan V., Mazur N., Kapush O., … Yukhymchuk V. Self-organized SERS substrates with efficient analyte enrichment in the hot Spots. ACS Omega. 2024;9(4): 4819–4830. https://doi.org/10.1021/acsomega.3c08393
Ermina A. A., Solodovchenko N. S., Levitskii V. S., … Zharova Y. A. Plasmonic disordered array of hemispherical AgNPs on SiO2@c-Si: their optical and SERS properties. Materials Science in Semiconductor Processing. 2024;169: 107861. https://doi.org/10.1016/j.mssp.2023.107861
Yang Z. W., Meng L. Y., Lin J. S., … Li J. F. 3D hotspots platform for plasmon enhanced Raman and second harmonic generation spectroscopies and quantitative analysis. Advanced Optical Materials. 2019;7: 3–8. https://doi.org/10.1002/adom.201901010
Morawiec S., Mendes M. J., Priolo F., Crupi I. Plasmonic nanostructures for light trapping in thinfilm solar cells. Materials Science in Semiconductor Processing. 2019;92: 10–18. https://doi.org/10.1016/j.mssp.2018.04.035
Atwater H. A., Polman A. Plasmonics for improved photovoltaic devices. Nature Materials. 2010;9: 205–213. https://doi.org/10.1038/nmat2629
Cesca T., Michieli N., Kalinic B., Balasa I. G., Rangel-Rojo R., Reyes-Esqueda J. A., Mattei G. Bidimensional ordered plasmonic nanoarrays for nonlinear optics, nanophotonics and biosensing applications. Materials Science in Semiconductor Processing. 2019; 92: 2–9. https://doi.org/10.1016/j.mssp.2018.03.025
Lippitz M., Van Dijk M. A., Orrit M. Third-harmonic generation from single gold nanoparticles. Nano Letters. 2005;5: 799–802. https://doi.org/10.1021/nl0502571
Sato R., Ohnuma M., Oyoshi K., Takeda Y. Experimental investigation of nonlinear optical properties of Ag nanoparticles: Effects of size quantization. Physical Review B. 2014;90: 1–6. https://doi.org/10.1103/PhysRevB.90.125417
Polat D. B., Eryilmaz L., Keles O. Generation of agsi film by magnetron sputtering for use As anodes in lithium ion batteries. ECS Meeting Abstracts. 2015;MA2015-01: 514–514. https://doi.org/10.1149/ma2015-01/2/514
Liu B., Xu G., Jin C., … Zhou L. The Si/Ag2Si/Ag particles with the enhanced mechanical contact as anode material for lithium ion batteries. Materials Letters. 2020;280: 128536. https://doi.org/10.1016/j.matlet.2020.128536
Li S., Ma W., Luo B., … Wang L. High-performance porous silicon/nanosilver anodes from industrial low-grade silicon for lithium-ion batteries. ACS Applied Materials and Interfaces. 2020;12: 49080–49089. https://doi.org/10.1021/acsami.0c14157
Li R., Yang H., Zhang Y., … Huang P. Physical mechanisms and enhancement of endurance degradation of SiOx:Ag-based volatile memristors. 2023 Silicon Nanoelectronics Workshop (SNW). 2023;40: 117–118. https://doi.org/10.23919/SNW57900.2023.10183918
Ding X., Huang P., Zhao Y., Feng Y., Liu L. Understanding of the volatile and nonvolatile switching in Ag-based memristors. IEEE Transactions on Electron Devices. 2022;69: 1034–1040. https://doi.org/10.1109/TED.2022.3144373
Sarkar D. K., Cloutier F., El Khakani M. A. Electrical switching in sol-gel derived Ag-SiO2 nanocomposite thin films. Journal of Applied Physics. 2005;97: 2–7. https://doi.org/10.1063/1.1870112
Dias C., Lv H., Picos R., …Ventura J. Bipolar resistive switching in Si/Ag nanostructures. Applied Surface Science. 2017;424: 122–126. https://doi.org/10.1016/j.apsusc.2017.01.140
Cha J. H., Yang S. Y., Oh J., … Choi S. Y. Conductive-bridging random-access memories for emerging neuromorphic computing. Nanoscale. 2020;12: 14339–14368. https://doi.org/10.1039/d0nr01671c
Sokolov A. S., Abbas H., Abbas Y., Choi C. Towards engineering in memristors for emerging meCondensed ory and neuromorphic computing: a review. Journal of Semiconductors. 2021;42(1): 013101. https://doi.org/10.1088/1674-4926/42/1/013101
Raeis-Hosseini N., Lim S., Hwang H., Rho J. Reliable Ge2Sb2Te5-integrated high-density nanoscale conductive bridge random access memory using facile nitrogen-doping strategy. Advanced Electronic Materials. 2018; 4(11). https://doi.org/10.1002/aelm.201800360
Cuenya B. R. Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects. Thin Solid Films. 2010;518: 3127–3150. https://doi.org/10.1016/j.tsf.2010.01.018
Semenova A.A., Semenov A.P., Goodilin E.A., Semenova I.A. Synthesis of Plasmonic Photonic Crystal SiO2–Ag Nanostructures by Ion Beam Deposition of Silver Clusters onto Silica Microspheres. Bulletin of the Russian Academy of Sciences: Physics. 2019; 83: 1415–1418. https://doi.org/10.3103/S1062873819110200
Lunin L.S., Chebotarev S.N., Pashchenko A.S., Bolobanova L.N. Ion beam deposition of photoactive nanolayers for silicon solar cells. Inorganic Materials. 2012; 48: 439–444. https://doi.org/10.1134/S0020168512050111
Saad A. M., Fedotov A. K., Fedotova J. A., … Sitnikov A. V. Characterization of (Co0.45Fe0.45Zr 0.10)x(Al2O3)1-x nanocomposite films applicable as spintronic materials. Physica Status Solidi C. 2006;3: 1283–1290. https://doi.org/10.1002/pssc.200563111
Svito I.,Fedotov A. K., Koltunowicz T. N., Saad A. Hopping of electron transport in granular Cux(SiO2)1-x nanocomposite films deposited by ionbeam sputtering. Journal of Alloys and Compounds. 2015;615: S371–S374. https://doi.org/10.1016/j.jallcom.2014.01.136
Agarwal B. K. Soft X-ray spectroscopy. X-Ray Spectroscopy. Springer, Berlin, Heidelberg; 1979, p. 311–330 https://doi.org/10.1007/978-3-662-14469-5_7
Zimmermann P., Peredkov S., Abdala P. M., … van Bokhoven J. A. Modern X-ray spectroscopy: XAS and XES in the laboratory. Coordination Chemistry Reviews. 2020;423: 213466. https://doi.org/10.1016/j.ccr.2020.213466
Terekhov V. A., Kashkarov V. M., Manukovskii E. Yu., Schukarev A. V., Domashevskaya E. P. Determination of the phase composition of surface layers of porous silicon by ultrasoft X-ray spectroscopy and X-ray photoelectron spectroscopy techniques. Journal of Electron Spectroscopy and Related Phenomena. 2001;114–116: 895–900. https://doi.org/10.1016/S0368-2048(00)00393-5
Domashevskaya E. P., Peshkov Y. A., Terekhov V. A., Yurakov Y. A., Barkov K. A. Phase composition of the buried silicon interlayers in the amorphous multilayer nanostructures [(Co45Fe45Zr10)/a-Si:H]41 and [(Co45Fe45Zr10)35(Al2O3)65/a-Si:H]41. Surface and Interface Analysis. 2018;50: 1265–1270. https://doi.org/10.1002/sia.6515
Langford J. I., Wilson A. J. C. Scherrer after sixty years: a survey and some new results in the determination of crystallite size. Journal of Applied Crystallography. 1978;11: 102–113. ttps://doi.org/10.1107/S0021889878012844
Kovba L. M., Trunov V. K. X-ray phase analysis. Moscow: Moscow University Publ.; 1976, 232 p. (In Russ.)
Jain R. A review on the development of XRD in ferrite nanoparticles. Journal of Superconductivity and Novel Magnetism. 2022;35: 1033–1047. https://doi.org/10.1007/s10948-022-06213-9
Wiech G., Feldhütter H. O., Šimůnek A. Electronic structure of amorphous SiOx:H alloy films studied by X-ray emission spectroscopy: Si K, Si L, and O K emission bands. Physical Review B. 1993;47: 6981–6989. https://doi.org/10.1103/PhysRevB.47.6981
Nekrashevich S. S., Gritsenko V. A. Electronic structure of silicon dioxide (a review). Physics of the Solid State. 2014;56(2): 207–222. https://doi.org/10.1134/s106378341402022x
Gladskikh I. A., Gushchin M. G., Vartanyan T. A. Resistance switching in Ag, Au, and Cu films at the percolation threshold. Semiconductors. 2018;52: 671–674. https://doi.org/10.1134/S1063782618050093
Vartanyan T. A., Gladskikh I. A., Leonov N. B., Przhibel’skii S. G. Fine structures and switching of electrical conductivity in labyrinth silver films on sapphire. Physics of the Solid State. 2014;56: 816–822. https://doi.org/10.1134/S1063783414040349
Copyright (c) 2024 Конденсированные среды и межфазные границы
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.