Synthesis and sensory properties of tungsten (VI) oxide-based nanomaterials
Abstract
The purpose of this work was to develop a methodology for the synthesis of WO3-based nano-scale materials, to provide their characterization, and to study their sensory properties.
The nanopowder was made by slowly adding nitric acid to an aqueous solution of ammonium paratungstate,
(NH4)10W21O41·xH2O, followed by centrifugation, drying, and calcination. The size of tungsten trioxide grains, which was 10-20 nm, was determined by transmission electron microscopy. According to X-ray phase analysis, the powder, which was calcined at a temperature of 500 °C, mainly consisted of a triclinic phase. Subsequently, diammine palladium (II) nitrate and terpeniol were added to the WO3 nanopowder to form a paste. The resulting paste was applied to a special dielectric substrate and calcined to a temperature of 750 °C. As a result, a fragile tungsten trioxide-based gel formed. The mass fraction of palladium in the fragile gel was 3%. The sensory properties of the obtained gas-sensitive material were studied under stationary (300 °C) and non-stationary temperature conditions (quick heating to 450 °C and slow cooling to 100 °C).
A sharp increase in the sensitivity of a tungsten trioxide-based sensor was observed under non-stationary temperature conditions which depended on the composition of the gas-sensitive layer
Downloads
References
Tesfamichael T., Ponzoni A., Ahsan M., Faglia G. Gas sensing characteristics of Fe-doped tungsten oxide thin films. Sensors and Actuators B: Chemical. 2012;168(2): 345–353. https://doi.org/10.1016/j.snb.2012.04.032
Tesfamichael T., Ahsan M., Notarianni M., … Bell J. Gas sensing of ruthenium implanted tungsten oxide thin films. Thin Solid Films. 2014;558: 416–422. https://doi.org/10.1016/j.tsf.2014.02.084
Zhang X., Dong B., Liu W., … Song H. Higly sensitive and selective acetone sensor based on threedimensional ordered WO3/Au nanocomposite with enhanced performance. Sensors Actuators, B Chemical. 2020;320(4): 128405. https://doi.org/10.1016/j.snb.2020.128405
Li H., Wu C.-H., Liu Y.-C., … Wu R.-J. Mesoporous WO3-TiO2 heterojunction for a hydrogen gas sensor. Sensors Actuators, B Chemical. 2021;341(2): 130035. https://doi.org/10.1016/j.snb.2021.130035
Nakate U. T., Yu Y. T., Park S. High performance acetaldehyde gas sensor based on p-n heterojunction interface of NiO nanosheets and WO3 nanorods. Sensors Actuators, B Chemical. 2021;344(5): 130264. https://doi.org/10.1016/j.snb.2021.130264
Shaposhnik A. V., Shaposhnik D. A., Turishchev S. Y., … Morante J. R. Gas sensing properties of individual SnO2 nanowires and SnO2 sol-gel nanocomposites. Beilstein Journal of Nanotechnology. 2019;10: 1380–1390. https://doi.org/10.3762/bjnano.10.136
Fan L., Xu N., Chen H., Zhou J., Deng S. A millisecond response and microwatt powerconsumption gas sensor: Realization based on crossstacked individual Pt-coated WO3 nanorods. Sensors Actuators B Chemical. 2021;346(2): 130545. https://doi.org/10.1016/j.snb.2021.130545
Mineo G., Moulaee K., Neri G., Mirabella S., Bruno E. H2 detection mechanism in chemoresistive sensor based on low-cost synthesized WO3 nanorods. Sensors Actuators B Chemical. 2021;348: 130704. https://doi.org/10.1016/j.snb.2021.130704
Hu Y., Li T., Zhang J., Guo J., Wang W., Zhang D. High-sensitive NO2 sensor based on p-NiCo2O4/n-WO3 heterojunctions. Sensors Actuators B Chemical. 2022;352(P2): 130912. https://doi.org/10.1016/j.snb.2021.130912
Karpe S. B., Bang A. D., Adhyapak D. P., Adhyapak P. V. Fabrication of high sensitive proto-type NOx sensor based on Pd nanoparticles loaded on WO3. Sensors Actuators B Chemical. 2022;354: 131203. https://doi.org/10.1016/j.snb.2021.131203
Yao G., Yu J., Wu H., … Tang Z. P-type Sb doping hierarchical WO3 microspheres for superior close to room temperature ammonia sensor. Sensors Actuators B Chemical. 2022;359: 131365. https://doi.org/10.1016/j.snb.2022.131365
Hu J., Xiong X., Guan W., Long H., Zhang L., Wang H. Self-templated flower-like WO3-In2O3 hollow microspheres for conductometric acetone sensors. Sensors Actuators B Chemical. 2022;361(10): 131705. https://doi.org/10.1016/j.snb.2022.131705
Sen S., Maity S., Kundu S. Fabrication of Fe doped reduced graphene oxide (rGO) decorated WO3 based low temperature ppm level acetone sensor: Unveiling sensing mechanism by impedance spectroscopy. Sensors Actuators B Chemical. 2022;361(3): 131706. https://doi.org/10.1016/j.snb.2022.131706
Wang X., Han W., Yang J., … Lu G. Conductometric ppb-level triethylamine sensor based on macroporous WO3-W18O49 heterostructures functionalized with carbon layers and PdO nanoparticles. Sensors Actuators B Chem. 2022;361(1): 131707. https://doi.org/10.1016/j.snb.2022.131707
Liu Y., Li X., Li X., … Liu Y. Highly permeable WO3/CuWO4 heterostructure with 3D hierarchical porous structure for high-sensitive room-temperature visible-light driven gas sensor. Sensors Actuators B Chemical. 2022;365(4): 131926. https://doi.org/10.1016/j.snb.2022.131926
Lee J., Kim S. Y., Yoo H. S., Lee W. Pd-WO3 chemiresistive sensor with reinforced self-assembly for hydrogen detection at room temperature. Sensors Actuators B Chemical. 2022;368(6): 132236. https://doi.org/10.1016/j.snb.2022.132236
Zhang Y., Wu C., Xiao B., … Lin H. ChemoresistiveNO2 sensor using La-doped WO3 nanoparticles synthesized by flame spray pyrolysis. Sensors Actuators B Chemical. 2022;369:(2): 132247. https://doi.org/10.1016/j.snb.2022.132247
He M., Xie L., Zhao X., Hu X., Li S., Zhu Z.-G. Highly sensitive and selective H2S gas sensors based on flower-like WO3/CuO composites operating at low/ room temperature. Journal of Alloys and Compounds. 2019;788: 36–43. https://doi.org/10.1016/j.jallcom.2019.01.349
Marikutsa A., Yang L., Kuznetsov A. N., Rumyantseva M., Gaskov A. Effect of W–O bonding on gas sensitivity of nanocrystalline Bi2WO6 and WO3. Journal of Alloys and Compounds. 2021;856: 158159. https://doi.org/10.1016/j.jallcom.2020.158159
Duong V. T., Nguyen C. T., Luong H. B., Nguyen D. C., Nguyen H. L. Ultralow-detection limit ammonia gas sensors at room temperature based on MWCNT/WO3 nanocomposite and effect of humidity. Solid State Sciences. 2021;113(11): 106534. https://doi.org/10.1016/j.solidstatesciences.2021.106534
Zhang C., Wu K., Liao H., Debliquy M. Room temperature WO3-Bi2WO6 sensors based on hierarchical microflowers for ppb-level H2S detection. Chemical Engineering Journal. 2022;430(P2): 132813. https://doi.org/10.1016/j.cej.2021.132813
Hwan Cho S., Min Suh J., Jeong B., … Won Jang H. Fast responding and highly reversible gasochromic H2 sensor using Pd-decorated amorphous WO3 thin films. Chemical Engineering Journal. 2022;446(P1): 136862. https://doi.org/10.1016/j.cej.2022.136862
Kumaresan M., Venkatachalam M., Saroja M., Gowthaman P. TiO2 nanofibers decorated with monodispersed WO3 heterostruture sensors for high gas sensing performance towards H2 gas. Inorganic Chemistry Communications. 2021;129(2): 108663. https://doi.org/10.1016/j.inoche.2021.108663
Chen L., Zhang Y., Sun B., … Tian C. Surface modification of WO3 nanoparticles with Pt and Ru for VOCs sensors. Chinese Journal of Analytical Chemistry. 2022: 100143. https://doi.org/10.1016/j.cjac.2022.100143
Hu J., Xiong X., Guan W., Long H. Designed construction of PdO@WO3 core–shell architecture as a high-performance acetone sensor. Journal of Environmental Chemical Engineering. 2021;9(6): 106852. https://doi.org/10.1016/j.jece.2021.106852
Sensor electronics, sensors: solid state sensors on silicon: a study guide for students of higher education institutions / E. P. Domashevskaya [et al.]; edited by A. M. Hoviv. Moscow: Yurayt Publishing House, 2020. 203 p. (in Russ). Available at: https://urait.ru/bcode/518779
Siciliano T., Tepore A., Micocci G., Serra A., Manno D., Filippo E. WO3 gas sensors prepared by thermal oxidization of tungsten. Sensors and Actuators B: Chemical. 2008;133(1): 321–326. https://doi.org/10.1016/j.snb.2008.02.028
Vallejos S., Khatko V., Calderer J., … Correig X. Micro-machined WO3-based sensors selective to oxidizing gases. Sensors and Actuators B: Chemical. 2008;132(1): 209–215. https://doi.org/10.1016/j.snb.2008.01.044
Zhang C., Boudiba A., Navio C., … Debliquy M. Highly sensitive hydrogen sensors based on cosputtered platinum-activated tungsten oxide films. International Journal of Hydrogen Energy. 2010;36(1): 1107–1114. https://doi.org/10.1016/j.ijhydene.2010.10.011
Yakovlev P. V., Shaposhnik A. V., Voishchev V. S., Kotov V. V., Ryabtsev S. V. Determination of gases using polymer-coated semiconductor sensors. Journal of Analytical Chemistry. 2002;57(3): 276–279. https://doi.org/10.1023/A:1014412919822
Shaposhnik A. V., Moskalev P. V., Zviagin A. A., … Vasiliev A. A. Selective determination of hydrogen sulfide using SnO2–Ag sensor working in nonstationary temperature regime. Chemosensors. 2021; 9(8): 203. https://doi.org/10.3390/chemosensors9080203
Shaposhnik A., Zvyagin А., Vasiliev A., Ryabtsev S., Shaposhnik D., Nazarenko I., Buslov V. Optimal temperature regimes of semiconductor sensors determination. Sorbtsionnye i Khromatograficheskie Protsessy. 2008;8(3): 501–506. (In Russ., abstract in Eng.). Available at: https://www.elibrary.ru/item.asp?id=11928774
Shaposhnik A., Moskalev P., Sizask E., Ryabtsev S., Vasiliev A. Selective detection of hydrogen sulfide and ethane by a single MOX-sensor. Sensors (Switzerland). 2019;19(5): 1135. https://doi.org/10.3390/s19051135
Copyright (c) 2024 Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.