Semiconductor metal oxide sensor for hydrogen sulphide operating under non-stationary temperature conditions

Keywords: Sensitivity, MOX sensor, Temperature modulation, Qualitative analysis, Quantitative analysis

Abstract

The aim of the work was to create a selective gas sensor for hydrogen sulphide. As a result of adding ammonia to the zinc acetate solution, centrifuging the obtained zinc hydroxide and subsequent calcination, a polydisperse zinc oxide powder with a grain size of 5–50 nm was obtained. The material was characterized using X-ray phase analysis and transmission electron microscopy. Subsequently, silver nitrate and terpeniol were added to the zinc oxide nanopowder to form a paste. The gas-sensitive material was obtained by applying the resulting paste on a special dielectric substrate and subsequent calcination, as a result of which the terpeniol burned out, and the silver nitrate turned into an oxide (the mass fraction of the silver was 3%). A non-stationary temperature mode for the operation of the sensor was selected, in which, after rapid
heating of the sensor to 450 °C (2 seconds), slow (13 seconds) cooling to 100 °C occurred. Each subsequent heating-cooling cycle with a total period of 15 seconds began immediately after the end of the previous cycle. The use of an unsteady temperature mode in combination with the selection of the composition of the gas-sensitive layer made it possible to obtain a response of 200 for a hydrogen sulphide concentration of 1 ppm. Along with an increase in sensitivity, a significant increase in selectivity was also observed. The cross-sensitivity for the determination of hydrogen sulphide and other reducing gases (CO, NH3, H2) was more than three orders of magnitude. Thus, this sensor can be used to detect hydrogen sulphide even in the presence of interfering components. The use of highly selective sensors in the tasks of qualitative and
quantitative analysis can significantly simplify the calibration in comparison with “electronic nose” devices. Devices based on highly selective sensors do not require the use of mathematical methods for processing multidimensional data arrays.

Downloads

Download data is not yet available.

Author Biographies

Alexey V. Shaposhnik, Voronezh State Agrarian University, 1 Michurina ul., Voronezh 394087, Russian Federation

DSc in Chemistry, Professor
at the Department of Chemistry, Voronezh State
Agrarian University, Voronezh, Russian Federation;
e-mail: avshaposhnik@gmail.com

Alexey A. Zviagin, Voronezh State Agrarian University, 1 Michurina ul., Voronezh 394087, Russian Federation

PhD in Chemistry, Docent at the
Department of Chemistry, Voronezh State Agrarian
University, Voronezh, Russian Federation; e-mail:
a.a.zviagin@rambler.ru

Olga V. Dyakonova, Voronezh State Agrarian University, 1 Michurina ul., Voronezh 394087, Russian Federation

PhD in Chemistry, Docent at
the Department of Chemistry, Voronezh State Agrarian
University, Voronezh, Russian Federation e-mail:
dyakol@yandex.ru

Stanislav V. Ryabtsev, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

DSc in Physics and
Mathematics, Head of the Laboratory, Voronezh State
University, Voronezh, Russian Federation; e-mail:
raybtsev@niif.vsu.ru

Dina Ghareeb, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

postgraduate student, Voronezh
State University, Voronezh State University, Voronezh,
Russian Federation; e-mail: raybtsev@niif.vsu.ru

References

Yamazoe N. New approaches for improving semiconductor gas sensors. Sensors and Actuators B: Chemical. 1991; 5 (1–4): 7–19. https://doi.org/10.1016/0925-4005(91)80213-4

Maekawa T., Tamaki J., Miura N., Yamazoe N. Sensing behavior of CuO-loaded SnO2 element for H2S detection. Chemistry Letters. 1991;20(4): 575–578. https://doi.org/10.1246/cl.1991.575

Tamaki J., Maekawa T., Miura N., Yamazoe, N. CuO-SnO2 element for highly sensitive and selective detection of H2S. Sensors and Actuators B: Chemical. 1992;9(3): 197–203. https://doi.org/10.1016/0925-4005(92)80216-k

Choi S.-W., Zhang J., Akash K., Kim S. S. H2S sensing performance of electrospun CuO-loaded SnO2 nanofibers. Sensors and Actuators B: Chemical. 2012;169: 54–60. https://doi.org/10.1016/j.snb.2012.02.054

Zhao Y., He X., Li J., Gao X., Jia J. Porous CuO/SnO2 compositenanofibersfabricated by electrospinning and their H2S sensing properties. Sensors and Actuators B: Chemical. 2012;165(1): 82–87. https://doi.org/10.1016/j.snb.2012.02.020

Shao F., Hoffmann M. W. G., Prades J. D., Zamani R., Arbiol J., Morante J. R., … Hernández- Ramírez F. Heterostructured p-CuO (nanoparticle)/n-SnO2 (nanowire) devices for selective H2S detection. Sensors and Actuators B: Chemical. 2013;181: 130–135. https://doi.org/10.1016/j.snb.2013.01.067

Hwang I.-S., Choi J.-K., Kim S.-J., Dong K.-Y., Kwon J.-H., Ju B.-K., Lee J.-H. Enhanced H2S sensing characteristics of SnO2 nanowires functionalized with CuO. Sensors and Actuators B: Chemical. 2009;142(1): 105–110. https://doi.org/10.1016/j.snb.2009.07.052

Katti V. R., Debnath A. K., Muthe K. P., Kaur M., Dua A. K., Gadkari S. C., … Sahni V. C. Mechanism of drifts in H2S sensing properties of SnO2:CuO composite thin film sensors prepared by thermal evaporation. Sensors and Actuators B: Chemical. 2003; 96(1–2): 245–252. https://doi.org/10.1016/s0925-4005(03)00532-x

Choi K.-I., Kim H.-J., Kang Y. C., Lee J.-H. Ultraselective and ultrasensitive detection of H2S in highly humid atmosphere using CuO-loaded SnO2 hollow spheres for real-time diagnosis of halitosis. Sensors and Actuators B: Chemical. 2014;194: 371–376. https://doi.org/10.1016/j.snb.2013.12.111

Verma M. K., Gupta V. A highly sensitive SnO2- CuO multilayered sensor structure for detection of H2S gas. Sensors and Actuators B: Chemical. 2012;166–167: 378–385. https://doi.org/10.1016/j.snb.2012.02.076

Vasiliev R. B., Rumyantseva M. N., Podguzova S. E., Ryzhikov A. S., Ryabova L. I., Gaskov A. M. Effect of interdiffusion on electrical and gas sensor properties of CuO/SnO2 heterostructure. Materials Science and Engineering: B. 1999;57(3): 241–246. https://doi.org/10.1016/s0921-5107(98)00432-2

Vasiliev R., Rumyantseva M., Yakovlev N., Gaskov A. CuO/SnO2 thin film heterostructures as chemical sensors to H2S. Sensors and Actuators B: Chemical. 1998;50(3): 186–193. https://doi.org/10.1016/s0925-4005(98)00235-4

Malyshev V. V., Pislyakov A. V. SnO2-based thick-film-resistive sensor for H2S detection in the concentration range of 1-10 mg m-3. Sensors and Actuators B: Chemical. 1998;47(1–3): 181–188.

https://doi.org/10.1016/S0925-4005(98)00021-5

Lantto V., Mizsei J. H2S monitoring as an air pollutant with silver-doped SnO2 thin-film sensors. Sensors and Actuators B: Chemical. 1991;5(1–4): 21–25. https://doi.org/10.1016/0925-4005(91)80214-5

Harkoma-Mattila A., Rantala T. S., Lantto V., Leppävuori, S. Sensitivity and selectivity of doped SnO2 thick-film sensors to H2S in the constant- and pulsedtemperature modes. Sensors and Actuators B: Chemical. 1992;6(1–3): 248–252. https://doi.org/10.1016/0925-4005(92)80063-4

Gong J., Chen Q., Lian M.-R., Liu N.-C., Stevenson R. G., Adami F. Micromachined nanocrystalline silver doped SnO2 H2S sensor. Sensors and Actuators B: Chemical. 2006;114(1): 32–39. https://doi.org/10.1016/j.snb.2005.04.035

Ngoc T. M., Duy N. V., Hung C. M., Hoa N. D., Nguyen H., Tonezzer M., Hieu N. V. Self-heated Agdecorated SnO2 nanowires with low power consumption used as a predictive virtual multisensor for H2Sselective sensing. Analytica Chimica Acta. 2019;1069: 108–116. https://doi.org/10.1016/j.aca.2019.04.020

Kolhe P. S., Koinkar P. M., Maiti N., Sonawane K. M. Synthesis of Ag doped SnO2 thin films for the evaluation of H2S gas sensing properties. Physica B: Condensed Matter. 2017;524: 90–96. https://doi.org/10.1016/j.physb.2017.07.056

Song B.-Y., Zhang M., Teng Y., Zhang X.-F., Deng Z.-P., Huo L.-H., Gao S. Highly selective ppb-level H2S sensor for spendable detection of exhaled biomarker and pork freshness at low temperature: Mesoporous SnO2 hierarchical architectures derived from waste scallion root. Sensors and Actuators B: Chemical. 2020;307: 127662. https://doi.org/10.1016/j.snb.2020.127662

Sberveglieri G., Groppelli S., Nelli P., Perego C., Valdré G., Camanzi A. Detection of sub-ppm H2S oncentrations by means of SnO2(Pt) thin films, grown by the RGTO technique. Sensors and Actuators B: Chemical. 1993;15(1–3): 86–89. https://doi.org/10.1016/0925-4005(93)85032-6

Keshtkar S., Rashidi A., Kooti M., Askarieh M., Pourhashem S., Ghasemy E., Izadi N. A novel highly sensitive and selective H2S gas sensor at low temperatures based on SnO2 quantum dots-C60 nanohybrid: Experimental and theory study. Talanta. 2018;88: 531–539. https://doi.org/10.1016/j.talanta.2018.05.099

Hu X., Zhu Z., Chen C., Wen T., Zhao X., Xie L. Highly sensitive H2S gas sensors based on Pd-doped CuO nanoflowers with low operating temperature. Sensors and Actuators B: Chemical. 2017;253: 809–817. https://doi.org/10.1016/j.snb.2017.06.183

Hu Q., Zhang W., Wang X., Wang Q., Huang B., Li Y., … Zhang Z. Binder-free CuO nanoneedle arrays based tube-type sensor for H2S gas sensing. Sensors and Actuators B: Chemical. 2021;326: 128993. https://doi.org/10.1016/j.snb.2020.128993

Diao K., Zhou M., Zhang J., Tang Y., Wang S., Cui X. High response to H2S gas with facile synthesized hierarchical ZnO microstructures. Sensors and Actuators B: Chemical. 2015;219: 30–37. https://doi.org/10.1016/j.snb.2015.04.116

Kim S.-J., Na C. W., Hwang I.-S., Lee J.-H. Onepot hydrothermal synthesis of CuO-ZnO composite hollow spheres for selective H2S detection. Sensors and Actuators B: Chemical. 2012;168: 83–89. https://doi.org/10.1016/j.snb.2012.01.045

Na H.-B., Zhang X.-F., Zhang M., Deng Z.-P., Cheng X.-L., Huo L.-H., Gao S. A fast response/recovery ppb-level H2S gas sensor based on porous CuO/ZnO heterostructural tubule via confined effect of absorbent cotton. Sensors and Actuators B: Chemical. 2019;297: 126816. https://doi.org/10.1016/j.snb.2019.126816

Wang L., Kang Y., Wang Y., Zhu B., Zhang S., Huang W., Wang S. CuO nanoparticle decorated ZnO nanorod sensor for low-temperature H 2S detection. Mater. Sci. Eng. C. 2012;32(7): 2079–2085. https://doi.org/10.1016/j.msec.2012.05.042

Shewale P. S., Yun K. S. Synthesis and characterization of Cu-doped ZnO/RGO nanocomposites for room-temperature H2S gas sensor. Journal of Alloys and Compounds. 2020;837: 155527. https://doi.org/10.1016/j.jallcom.2020.155527

Wang X., Li S., Xie L., Li X., Lin D., Zhu Z. Lowtemperature and highly sensitivity H2S gas sensor based on ZnO/CuO composite derived from bimetal metal-organic frameworks. Ceramics International. 2020;46(10): 15858–15866. https://doi.org/10.1016/j.ceramint.2020.03.133

Balouria V., Kumar A., Samanta S., Singh A., Debnath A. K., Mahajan A., … Gupta S. K. Nanocrystalline Fe2O3 thin films for ppm level detection of H2S. Sensors and Actuators B: Chemical. 2013;181: 471–478. https://doi.org/10.1016/j.snb.2013.02.013

Natkaeo A., Phokharatkul D., Hodak J. H., Wisitsoraat A., Hodak S. K. Highly selective sub– 10 ppm H2S gas sensors based on Ag-doped CaCu3Ti4O12 films. Sensors and Actuators B: Chemical. 2018;260: 571–580. https://doi.org/10.1016/j.snb.2017.12.134

Liang X., Kim T.-H., Yoon J.-W., Kwak C.-H., Lee J.-H. Ultrasensitive and ultraselective detection of H2S using electrospun CuO-loaded In2O3 nanofiber sensors assisted by pulse heating. Sensors and Actuators B: Chemical. 2015;209: 934–942. https://doi.org/10.1016/j.snb.2014.11.130

Shaposhnik A., Moskalev P., Sizask E., Ryabtsev S., Vasiliev A. Selective detection of hydrogen sulfide and methane by a single MOX-sensor. Sensors. 2019;19(5): 1135. https://doi.org/10.3390/s19051135

Published
2021-11-24
How to Cite
Shaposhnik, A. V., Zviagin, A. A., Dyakonova, O. V., Ryabtsev, S. V., & Ghareeb, D. (2021). Semiconductor metal oxide sensor for hydrogen sulphide operating under non-stationary temperature conditions. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 23(4), 637-643. https://doi.org/10.17308/kcmf.2021.23/3684
Section
Original articles