The solid-phase equilibria in the GeBi2Te4-SnBi2Te4-Bi2Te3 system at 300 K and the characterization of tetradymite-type layered solid solutions
Abstract
The GeTe-SnTe-Bi2Te3 system is of great interest due to the potential formation of a series of cation-substituted solid solutions based on ternary layered compounds with a tetradymite-type structure, which have significant potential as valuable thermoelectric materials and topological insulators. This study presents the results of investigating this system in the composition range of GeBi2Te4-SnBi2Te4-Bi2Te3 using powder X-ray diffraction analysis. Particular attention is given to obtaining equilibrium alloys.
An isothermal section of the phase diagram at 300 K has been constructed, consisting of four single-phase regions separated by three two-phase regions. The X-ray diffraction patterns of the equilibrium alloys were refined using the Rietveld method. The obtained diffraction results clearly indicate the presence of continuous series of solid solutions along the sections GeBi2Te4-SnBi2Te4, GeBi4Te7-SnBi4Te7, and GeBi6Te10-SnBi6Te10. The lattice parameters for all the solid solution series were determined, showing a linear increase with the rise in Sn concentration.
Downloads
References
Aliev Z. S., Amiraslanov I. R., Nasonova D. I., … Chulkov E. V. Novel ternary layered manganese bismuth tellurides of the MnTe-Bi2Te3 system: synthesis and crystal structure. Journal of Alloys and Compounds. 2019;789: 443–450. https://doi.org/10.1016/j.jallcom.2019.03.030
Orujlu E. N., Seidzade A .E., Babanly D. M., Amiraslanov I. R., Babanly M. B. New insights into phase equilibria of the SnTe–Bi2Te3 pseudo-binary system: synthesis and crystal structure of new tetradymite-type compound Sn3Bi2Te6. Journal of Solid State Chemistry. 2024;330: 124494. https://doi.org/10.1016/j.jssc.2023.124494
Seidzade A. E., Orujlu E. N., Doert T., Amiraslanov I. R., Aliev Z. S., Babanly M. B. An updated phase diagram of the SnTe-Sb2Te3 system and the crystal structure of the new compound SnSb4Te7. Journal of Phase Equilibria and Diffusion. 2021;42: 373–8. https://doi.org/10.1007/s11669-021-00888-8
Alakbarova T. M., Meyer H.-J., Orujlu E. N., Amiraslanov I. R., Babanly M. B. Phase equilibria of the GeTe−Bi2Te3 quasi-binary system in the range 0–50 mol% Bi2Te3. Phase Transitions. 2021;94: 366–75. https://doi.org/10.1080/01411594.2021.1937625
Alakbarova T. M., Meyer H.-J., Orujlu E. N., Babanly M. B. A refined phase diagram of the GeTe-Bi2Te3 system. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases. 2022;24: 11–18. https://doi.org/10.17308/kcmf.2022.24/9050
Huang D., Xia D., Ye T., Fujita T. New experimental studies on the phase relationship of the Bi–Pb–Te system. Materials & Design. 2022;224: 111384. https://doi.org/10.1016/j.matdes.2022.111384
Omoto T., Kanaya H., Ishibashi H., Kubota Y., Kifune K., Kosuga A. Formation phases and electrical properties of Ge-Bi-Te compounds with homologous structures. Journal of Electronic Materials. 2015;45: 1478–83. https://doi.org/10.1007/s11664-015-4083-z
Gojayeva I. M., Babanly V. I., Aghazade A. I., Orujlu E. N. Experimental reinvestigation of the PbTe–Bi2Te3 pseudo-binary system. Azerbaijan Chemical Journal. 2022;0: 47–53. https://doi.org/10.32737/0005-2531-2022-2-47-53
Heremans J. P., Cava R. J., Samarth N. Tetradymites as thermoelectrics and topological insulators. Nature Review Materials. 2017;2: 17049. https://doi.org/10.1038/natrevmats.2017.49
Banik A., Roychowdhury S., Biswas K. The journey of tin chalcogenides towards high-performance thermoelectrics and topological materials. Chemical Communications. 2018;54: 6573–6590. https://doi.org/10.1039/c8cc02230e
Lukyanova L. N., Usov O. A., Volkov M. P., Makarenko I. V. Topological thermoelectric materials based on bismuth telluride. Nanotechnologly Reports. 2021;16: 282–293. https://doi.org/10.1134/s2635167621030125
Xu N., Xu Y., Zhu J. Topological insulators for thermoelectrics. Npj Quantum Materials. 2017;2(1). https://doi.org/10.1038/s41535-017-0054-3
Yang T., Yang Y., Wang X., Zhang G., Cheng Z. Topological thermoelectrics: new opportunities and challenges. Mate14. Babanly M. B., Chulkov E. V., Aliev Z. S., Shevelkov A. V., Amiraslanov I. R. Phase diagrams in materials science of topological insulators based on metal chalcogenides. Russian Journal of Inorganic Chemistry. 2017;62: 1703–1729. https://doi.org/10.1134/S0036023617130034
Hasan M. Z., Kane C. L. Colloquium: topological insulators. Review of Modern Physics. 2010;82: 3045–3067. https://doi.org/10.1103/revmodphys.82.3045
Qi X.-L., Zhang S.-C. Topological insulators and superconductors. Review of Modern Physics. 2011;83: 1057–1110. https://doi.org/10.1103/revmodphys.83.1057
Zhang H., Liu C.-X., Qi X.-L., Dai X., Fang Z., Zhang S.‑C. Topological insulators in BiSe3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Physics. 2009;5: 438–442. https://doi.org/10.1038/nphys1270
Rachel S. Interacting topological insulators: a review. Reports on Progress in Physics. 2018;81: 116501. https://doi.org/10.1088/1361-6633/aad6a6
McGuire M. A., Zhang H., May A. F., … Yan J. Superconductivity by alloying the topological insulator SnBi2Te4. Physical Review Materials. 2023;7. https://doi.org/10.1103/physrevmaterials.7.034802
Saxena A., Karn N. K., Sharma M. M., Awana V. P. S. Detailed structural and topological analysis of SnBi2Te4 single crystal. Journal of Physics and Chemistry of Solids. 2023;174: 111169. https://doi.org/10.1016/j.jpcs.2022.111169
Wang L-L. Highly tunable band inversion in AB2X4 (A=Ge, Sn, Pb; B=As, Sb, Bi; X=Se, Te) compounds. Physical Review Materials. 2022;6. https://doi.org/10.1103/physrevmaterials.6.094201
Marcinkova A., Wang J. K., Slavonic C., … Morosan E. Topological metal behavior in GeBi2Te4 single crystals. Physical Review B. 2013;88. https://doi.org/10.1103/physrevb.88.165128
Klimovskikh I. I., Otrokov M. M., Estyunin D., … Chulkov E. V. Tunable 3D/2D magnetism in the (MnBi2Te4)(Bi2Te3)m topological insulators family. Npj Quantum Materials. 2020;5. https://doi.org/10.1038/s41535-020-00255-9
Kuroda K., Miyahara H., Ye M., … Kimura A. Experimental verification as a 3D topological insulator. Physical Review Letters. 2012;108. https://doi.org/10.1103/physrevlett.108.206803
Orujlu E. Phase equilibria in the SnBi2Te4−MnBi2Te4 system and characterization of the Sn1-xMnxBi2Te4 solid solutions. Physics and Chemistry of Solid State. 2020;21: 113–116. https://doi.org/10.15330/pcss.21.1.113-116
Pan L., Li J., Berardan D., Dragoe N. Transport properties of the SnBi2Te4–PbBi2Te4 solid solution. Journal of Solid State Chemistry. 2015;225: 168–173. https://doi.org/10.1016/j.jssc.2014.12.016
Frolov A. S., Usachov D. Yu., Tarasov A. V., … Yashina L. V. Magnetic Dirac semimetal state of (Mn,Ge)Bi2Te4. Communications Physics. 2024;7. https://doi.org/10.1038/s42005-024-01675-w
Wang S., Xing T., Hu P., … Chen, L. Optimized carrier concentration and enhanced thermoelectric properties in GeSb4-xBixTe7 materials. Applied Physics Letters. 2022;121. https://doi.org/10.1063/5.0123298
Qian T., Yao Y.-T., Hu C., … Ni N. Magnetic dilution effect and topological phase transitions in (Mn1-xPbx)Bi2Te4. Physical Review B. 2022;106. https://doi.org/10.1103/physrevb.106.045121
Tokumoto Y., Sugimoto K., Hattori Y., Edagawa K. Electronic transport properties of Pb(Bi1-xSbx)2(Te1-ySey)4 topological insulator. Journal of Applied Physics. 2022;131. https://doi.org/10.1063/5.0077002
Aghazade A. I. Phase relations and characterization of solid solutions in the SnBi2Te4–PbBi2Te4 and SnBi4Te7–PbBi4Te7 systems. Azerbaijan Chemical Journal. 2022;0(3): 75–80. https://doi.org/10.32737/0005-2531-2022-3-75-80
Aghazade A. I., Orujlu E. N., Salimov Z. E., Mammadov A. N., Babanly M. B. Experimental investigation of the solid phase equilibria at 300 K in the SnBi2Te4-PbBi2Te4-Bi2Te3 system. Physics and Chemistry of Solid State. 2023;24: 453–459. https://doi.org/10.15330/pcss.24.3.453-459rials Today Chemistry. 2023;30: 101488. https://doi.org/10.1016/j.mtchem.2023.101488
Copyright (c) 2024 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.