Electronic structure and composition of tin oxide thin epitaxial and magnetron layers according to synchrotron XANES studies

Keywords: Tin and its oxides, Electronic structure, Density of states, Local atomic surrounding, Composition, Epitaxial nanolayers, X-ray absorption near edge structure, Synchrotron investigations, Magnetron nanolayers

Abstract

The materials of the tin-oxygen system and thin-film structures based on them are modern and actual for the creation of a wide range of electronic devices, for example, resistive gas sensors of high sensitivity and short response time with low energy consumption and high manufacturability. An important direction in the study of such materials and structures is the control of properties with variations in technological formation regimes. Information on the composition, local atomic and electronic structure of thin layers of the tin-oxygen system with varying approaches to their production is in demand. 

The work is devoted to the study of the electronic structure of thin layers of tin oxides obtained by modern methods of molecular beam epitaxy and magnetron sputtering. A study of the local partial density of electronic states in the conduction band by X-ray absorption near edge structure spectroscopy of tin and oxygen has been carried out. The data were obtained using high-intensity synchrotron radiation, which allows varying the monochromatized radiation quantum energy without loss in intensity, that is necessary to obtain high-resolution X-ray spectral data.

It is shown that the composition, local atomic surrounding, electronic spectrum and their features depend on the technology of formation and storage conditions of the studied structures. Synchrotron X-ray spectroscopy data show the presence of intermediate oxides of the tin-oxygen system in the studied materials after prolonged storage in laboratory conditions. The data obtained indicate the possibility of controlled variation in the composition, local atomic surrounding and electronic spectrum of thin-film structures of tin oxides of small thickness. The results of the work can be used in the formation and subsequent modification of thin and ultrathin layers of tin oxides by magnetron sputtering and molecular beam epitaxy, as well as in their further application as active layers of microelectronics devices

Downloads

Download data is not yet available.

Author Biographies

Olga A. Chuvenkova, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Phys.-Math.),
Senior Researcher, Joint Scientific and Educational
Laboratory “Atomic and Electronic Structure of
Functional Materials” of Voronezh State University
and the National Research Center “Kurchatov
Institute”, Voronezh State University (Voronezh,
Russian Federation)

Nikolai I. Boikov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Engineer-Physicist, Joint Scientific
and Educational Laboratory “Atomic and Electronic
Structure of Functional Materials” of Voronezh State
University and the National Research Center
“Kurchatov Institute”, Voronezh State University
(Voronezh, Russian Federation)

Stanislav V. Ryabtsev, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Dr. Sci. (Phys.-Math.), Head
of the Institute of Physics, Voronezh State University
(Voronezh, Russian Federation)

Elena V. Parinova, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Phys.-Math.),
Assistant Professor, General Physics Department,
Voronezh State University (Voronezh, Russian
Federation)

Ratibor G. Chumakov, National Research Center “Kurchatov Institute”, 1 Akademika Kurchatova pl., Moscow 123182, Russian Federation

Cand. Sci. (Phys.-Math.),
Senior Researcher of the National Research Center
“Kurchatov Institute” (Moscow, Russian Federation)

Alexei M. Lebedev, National Research Center “Kurchatov Institute”, 1 Akademika Kurchatova pl., Moscow 123182, Russian Federation

Cand. Sci. (Phys.-Math.), Senior
Researcher of the National Research Center “Kurchatov
Institute” (Moscow, Russian Federation)

Dmitry Smirnov, Dresden University of Technology, 18 Zellescher Weg, Dresden 01069, Germany

Cand. Sci. (Phys.-Math.),
Researcher, Institut für Festkörper- und Materialphysik,
Technische Universität Dresden (Dresden, Germany)

Anna Makarova, Free University of Berlin, 22 Arnimallee, Berlin14195, Germany

Cand. Sci. (Phys.-Math.),
Researcher, Institut für Chemie und Biochemie, Freie
Universität Berlin (Berlin, Germany)

Sofiia S. Titova, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Teacher of General Physics
Department, Voronezh State University, (Voronezh,
Russian Federation)

Kirill A. Fateev, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Laboratory Assistant in Physics of
General Physics Department, Voronezh State
University, (Voronezh, Russian Federation)

Sergey Yu. Turishchev, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Dr. Sci. (Phys.-Math.),
Associate Professor, Head of the General Physics
Department, Voronezh State University (Voronezh,
Russian Federation)

References

Chopra K. L., Major S., Pandya D. K. Transparent conductors – А status review. Thin Solid Films. 1983;102: 1–46. https://doi.org/10.1016/0040-6090(83)90256-0

Lee S. U., Choi W. S., Hong B. Synthesis and characterization of SnO2 : Sb film by DC magnetron sputtering method for applications to transparent electrodes. Physica Scripta. 2007;129: 312–315. https://doi.org/10.1088/0031-8949/2007/T129/069

Niranjan R. S., Hwang Y. K., Kim D.-K., Jhung S. H., Chang J.-S., Mulla I. S. Nanostructured tin oxide: Synthesis and gas-sensing properties. Materials Chemistry and Physics. 2005;92: 384–388. https://doi.org/10.1016/j.matchemphys.2005.01.050

Subramanian N. S., Santhi B., Sundareswaran S., Venkatakrishnan K. S. Studies on spray deposited SnO2, Pd:SnO2 and F:SnO2 thin films for gas sensor applications. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry. 2006;36: 131–135. https://doi.org/10.1080/15533170500478883

Tonkikh A. A., Zakharov N. D., Eisenschmidt C., Leipner H. S., Werner P. Aperiodic SiSn/Si multilayers for thermoelectric applications. Journal of Crystal Growth. 2014;392: 49–51. http://doi.org/10.1016/j.jcrysgro.2014.01.047

Arthur J. R. Molecular beam epitaxy. Surface Science. 2002;500(1-3):189–217. https://doi.org/10.1016/S0039-6028(01)01525-4

Wang T., Prakash A., Warner E., Gladfelter W. L., Jalan B. Molecular beam epitaxy growth of SnO2 using a tin chemical precursor. Journal of Vacuum Science & Technology A. 2015;33(2): 020606-1-4. http://doi.org/10.1116/1.4913294

Rosental A., Tarre A., Gerst A., … Uustare T. Epitaxial single and double nanolayers of SnO2 and TiO2 for resistive gas sensors. IEEE Sensors Journal. 2013;13(5): 1648–1655. https://doi.org/10.1109/JSEN.2013.2238227

Gangwar A. K., Godiwal R., Jaiswal J., … Singh P. Magnetron configurations dependent surface properties of SnO2 thin films deposited by sputtering process. Vacuum. 2020;177: 109353-1-9. https://doi.org/10.1016/j.vacuum.2020.109353

Nguyen T. T., Dang H. P., Luc Q. H., Le T. Studying the influence of deposition temperature and nitrogen contents on the structural, optical, and electrical properties of N-doped SnO2 films prepared by direct current magnetron sputtering. Ceramics International. 2019;45: 9147–9156. https://doi.org/10.1016/j.ceramint.2019.01.255

Domashevskaya E. P., Chuvenkova O. A., Ryabtsev S. V., …Turishchev S. Yu. Electronic structure of undoped and doped SnOx nanolayers. Thin Solid Films. 2013;537(30): 137–144. https://doi.org/10.1016/j.tsf.2013.03.051

Brown F. C., Rustgi O. P. Extreme ultraviolet transmission of crystalline and amorphous silicon. Physical Review Letters. 1972;28: 497–500. https://doi.org/10.1103/PhysRevLett.28.497

Barranco A., Yubero F., Espinos J. P., Groening P., Gonzalez-Elipe A. R. Electronic state characterization of SiOx thin films prepared by evaporation. Journal of Applied Physics. 2005;97: 113714. https://doi.org/10.1063/1.1927278

Turishchev S. Yu., Parinova E. V., Pisliaruk A. K., … Sivakov V. Surface deep profile synchrotron studies of mechanically modified top-down silicon nanowires array using ultrasoft X-ray absorption near edge structure spectroscopy. Scientific Reports. 2019;9(8066): 1–7. https://doi.org/10.1038/s41598-019-44555-y

Koyuda D. A., Titova S. S., Tsurikova U. A., … Turishchev S. Yu. Composition and electronic structure of porous silicon nanoparticles after oxidation under air- or freeze-drying conditions. Materials Letters. 2022;312: 131608-1-3. https://doi.org/10.1016/j.matlet.2021.131608

Ming T., Turishchev S., Schleusener A., … Sivakov V. Silicon suboxides as driving force for efficient light-enhanced hydrogen generation on silicon nanowires. Small. 2021;19: 2007650-1-6. https://doi.org/10.1002/smll.202007650

Kucheyev S., Baumann T. F., Sterne P. A., … Willey T. M. Surface electronic states in three-dimensional SnO2 nanostructures. Physical Review B. 2005;72(3): 035404-1-5. https://doi.org/10.1103/PhysRevB.72.035404

Sharma A., Varshney M., Shin H. J., Chae K. H., Won S. O. X-ray absorption spectroscopy investigations on electronic structure and luminescence properties of Eu:SnO2-SnO nanocomposites. Current Applied Physics. 2016;16: 1342–1348. http://dx.doi.org/10.1016/j.cap.2016.08.005

Chuvenkova O. A., Domashevskaya E. P., Ryabtsev S. V., … Turishchev S. Yu. XANES and XPS investigations of surface defects in wire like SnO2 crystals. Physics of the Solid State. 2015;57(1): 153–161. https://doi.org/10.1134/s1063783415010072

Manyakin M. D., Kurganskii S. I., Dubrovskii O. I., … Turishchev S. Yu. Electronic and atomic structure studies of tin oxide layers using X-ray absorption near edge structure spectroscopy data modelling. Materials Science in Semiconductor Processing. 2019; 99: 28–33. https://doi.org/10.1016/j.mssp.2019.04.006

Domashevskaya E. P., Yurakov Yu. A., Ryabtsev S. V., Chuvenkova O. A., Kashkarov V. M., Turishchev S. Yu. Synchrotron investigations of the initial stage of tin nanolayers oxidation. Journal of Electron Spectroscopy and Related Phenomena. 2007;156–158: 340–343. httpa://doi.org/10.1016/j.elspec.2006.11.042

Stohr J. NEXAFS spectroscopy. Berin: Springer; 1996. 403 p.

Fedoseenko S. I., Iossifov I. E., Gorovikov S. A., … Kaindl G. Development and present status of the Russian–German soft X-ray beamline at BESSY II. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2001;470: 84–88. https://doi.org/10.1016/S0168-9002(01)01032-4

Lebedev A. M., Menshikov K. A., Nazin V. G., Stankevich V. G., Tsetlin M. B., Chumakov R. G. NanoPES photoelectron beamline of the Kurchatov Synchrotron Radiation Source. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2021;15: 1039–1044. https://doi.org/10.1134/S1027451021050335

Kasrai M., Lennard W. N., Brunner R. W., Bancroft G. M., Bardwell J. A., Tan K. H.Sampling depth of total electron and fluorescence measurements in Si L- and K-edge absorption spectroscopy. Applied Surface Science. 1 996; 99: 303–312. https://doiorg/10.1016/0169-4332(96)00454-0

Erbil A., Cargill III G. S., Frahm R., Boehme R. F. Total-electron-yield current measurements for near-surface extended x-ray-absorption fine structure. Physical Review B. 1988;37: 2450–2464. https://doi.org/10.1103/PhysRevB.37.2450

Published
2024-02-28
How to Cite
Chuvenkova, O. A., Boikov, N. I., Ryabtsev, S. V., Parinova, E. V., Chumakov, R. G., Lebedev, A. M., Smirnov, D., Makarova, A., Titova, S. S., Fateev, K. A., & Turishchev, S. Y. (2024). Electronic structure and composition of tin oxide thin epitaxial and magnetron layers according to synchrotron XANES studies. Condensed Matter and Interphases, 26(1), 153-160. https://doi.org/10.17308/kcmf.2024.26/11897
Section
Original articles

Most read articles by the same author(s)