Electronic structure and composition of tin oxide thin epitaxial and magnetron layers according to synchrotron XANES studies
Abstract
The materials of the tin-oxygen system and thin-film structures based on them are modern and actual for the creation of a wide range of electronic devices, for example, resistive gas sensors of high sensitivity and short response time with low energy consumption and high manufacturability. An important direction in the study of such materials and structures is the control of properties with variations in technological formation regimes. Information on the composition, local atomic and electronic structure of thin layers of the tin-oxygen system with varying approaches to their production is in demand.
The work is devoted to the study of the electronic structure of thin layers of tin oxides obtained by modern methods of molecular beam epitaxy and magnetron sputtering. A study of the local partial density of electronic states in the conduction band by X-ray absorption near edge structure spectroscopy of tin and oxygen has been carried out. The data were obtained using high-intensity synchrotron radiation, which allows varying the monochromatized radiation quantum energy without loss in intensity, that is necessary to obtain high-resolution X-ray spectral data.
It is shown that the composition, local atomic surrounding, electronic spectrum and their features depend on the technology of formation and storage conditions of the studied structures. Synchrotron X-ray spectroscopy data show the presence of intermediate oxides of the tin-oxygen system in the studied materials after prolonged storage in laboratory conditions. The data obtained indicate the possibility of controlled variation in the composition, local atomic surrounding and electronic spectrum of thin-film structures of tin oxides of small thickness. The results of the work can be used in the formation and subsequent modification of thin and ultrathin layers of tin oxides by magnetron sputtering and molecular beam epitaxy, as well as in their further application as active layers of microelectronics devices
Downloads
References
Chopra K. L., Major S., Pandya D. K. Transparent conductors – А status review. Thin Solid Films. 1983;102: 1–46. https://doi.org/10.1016/0040-6090(83)90256-0
Lee S. U., Choi W. S., Hong B. Synthesis and characterization of SnO2 : Sb film by DC magnetron sputtering method for applications to transparent electrodes. Physica Scripta. 2007;129: 312–315. https://doi.org/10.1088/0031-8949/2007/T129/069
Niranjan R. S., Hwang Y. K., Kim D.-K., Jhung S. H., Chang J.-S., Mulla I. S. Nanostructured tin oxide: Synthesis and gas-sensing properties. Materials Chemistry and Physics. 2005;92: 384–388. https://doi.org/10.1016/j.matchemphys.2005.01.050
Subramanian N. S., Santhi B., Sundareswaran S., Venkatakrishnan K. S. Studies on spray deposited SnO2, Pd:SnO2 and F:SnO2 thin films for gas sensor applications. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry. 2006;36: 131–135. https://doi.org/10.1080/15533170500478883
Tonkikh A. A., Zakharov N. D., Eisenschmidt C., Leipner H. S., Werner P. Aperiodic SiSn/Si multilayers for thermoelectric applications. Journal of Crystal Growth. 2014;392: 49–51. http://doi.org/10.1016/j.jcrysgro.2014.01.047
Arthur J. R. Molecular beam epitaxy. Surface Science. 2002;500(1-3):189–217. https://doi.org/10.1016/S0039-6028(01)01525-4
Wang T., Prakash A., Warner E., Gladfelter W. L., Jalan B. Molecular beam epitaxy growth of SnO2 using a tin chemical precursor. Journal of Vacuum Science & Technology A. 2015;33(2): 020606-1-4. http://doi.org/10.1116/1.4913294
Rosental A., Tarre A., Gerst A., … Uustare T. Epitaxial single and double nanolayers of SnO2 and TiO2 for resistive gas sensors. IEEE Sensors Journal. 2013;13(5): 1648–1655. https://doi.org/10.1109/JSEN.2013.2238227
Gangwar A. K., Godiwal R., Jaiswal J., … Singh P. Magnetron configurations dependent surface properties of SnO2 thin films deposited by sputtering process. Vacuum. 2020;177: 109353-1-9. https://doi.org/10.1016/j.vacuum.2020.109353
Nguyen T. T., Dang H. P., Luc Q. H., Le T. Studying the influence of deposition temperature and nitrogen contents on the structural, optical, and electrical properties of N-doped SnO2 films prepared by direct current magnetron sputtering. Ceramics International. 2019;45: 9147–9156. https://doi.org/10.1016/j.ceramint.2019.01.255
Domashevskaya E. P., Chuvenkova O. A., Ryabtsev S. V., …Turishchev S. Yu. Electronic structure of undoped and doped SnOx nanolayers. Thin Solid Films. 2013;537(30): 137–144. https://doi.org/10.1016/j.tsf.2013.03.051
Brown F. C., Rustgi O. P. Extreme ultraviolet transmission of crystalline and amorphous silicon. Physical Review Letters. 1972;28: 497–500. https://doi.org/10.1103/PhysRevLett.28.497
Barranco A., Yubero F., Espinos J. P., Groening P., Gonzalez-Elipe A. R. Electronic state characterization of SiOx thin films prepared by evaporation. Journal of Applied Physics. 2005;97: 113714. https://doi.org/10.1063/1.1927278
Turishchev S. Yu., Parinova E. V., Pisliaruk A. K., … Sivakov V. Surface deep profile synchrotron studies of mechanically modified top-down silicon nanowires array using ultrasoft X-ray absorption near edge structure spectroscopy. Scientific Reports. 2019;9(8066): 1–7. https://doi.org/10.1038/s41598-019-44555-y
Koyuda D. A., Titova S. S., Tsurikova U. A., … Turishchev S. Yu. Composition and electronic structure of porous silicon nanoparticles after oxidation under air- or freeze-drying conditions. Materials Letters. 2022;312: 131608-1-3. https://doi.org/10.1016/j.matlet.2021.131608
Ming T., Turishchev S., Schleusener A., … Sivakov V. Silicon suboxides as driving force for efficient light-enhanced hydrogen generation on silicon nanowires. Small. 2021;19: 2007650-1-6. https://doi.org/10.1002/smll.202007650
Kucheyev S., Baumann T. F., Sterne P. A., … Willey T. M. Surface electronic states in three-dimensional SnO2 nanostructures. Physical Review B. 2005;72(3): 035404-1-5. https://doi.org/10.1103/PhysRevB.72.035404
Sharma A., Varshney M., Shin H. J., Chae K. H., Won S. O. X-ray absorption spectroscopy investigations on electronic structure and luminescence properties of Eu:SnO2-SnO nanocomposites. Current Applied Physics. 2016;16: 1342–1348. http://dx.doi.org/10.1016/j.cap.2016.08.005
Chuvenkova O. A., Domashevskaya E. P., Ryabtsev S. V., … Turishchev S. Yu. XANES and XPS investigations of surface defects in wire like SnO2 crystals. Physics of the Solid State. 2015;57(1): 153–161. https://doi.org/10.1134/s1063783415010072
Manyakin M. D., Kurganskii S. I., Dubrovskii O. I., … Turishchev S. Yu. Electronic and atomic structure studies of tin oxide layers using X-ray absorption near edge structure spectroscopy data modelling. Materials Science in Semiconductor Processing. 2019; 99: 28–33. https://doi.org/10.1016/j.mssp.2019.04.006
Domashevskaya E. P., Yurakov Yu. A., Ryabtsev S. V., Chuvenkova O. A., Kashkarov V. M., Turishchev S. Yu. Synchrotron investigations of the initial stage of tin nanolayers oxidation. Journal of Electron Spectroscopy and Related Phenomena. 2007;156–158: 340–343. httpa://doi.org/10.1016/j.elspec.2006.11.042
Stohr J. NEXAFS spectroscopy. Berin: Springer; 1996. 403 p.
Fedoseenko S. I., Iossifov I. E., Gorovikov S. A., … Kaindl G. Development and present status of the Russian–German soft X-ray beamline at BESSY II. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2001;470: 84–88. https://doi.org/10.1016/S0168-9002(01)01032-4
Lebedev A. M., Menshikov K. A., Nazin V. G., Stankevich V. G., Tsetlin M. B., Chumakov R. G. NanoPES photoelectron beamline of the Kurchatov Synchrotron Radiation Source. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2021;15: 1039–1044. https://doi.org/10.1134/S1027451021050335
Kasrai M., Lennard W. N., Brunner R. W., Bancroft G. M., Bardwell J. A., Tan K. H.Sampling depth of total electron and fluorescence measurements in Si L- and K-edge absorption spectroscopy. Applied Surface Science. 1 996; 99: 303–312. https://doiorg/10.1016/0169-4332(96)00454-0
Erbil A., Cargill III G. S., Frahm R., Boehme R. F. Total-electron-yield current measurements for near-surface extended x-ray-absorption fine structure. Physical Review B. 1988;37: 2450–2464. https://doi.org/10.1103/PhysRevB.37.2450
Copyright (c) 2024 Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.