Электронное строение и состав тонких эпитаксиальных и магнетронных слоев оксида олова по данным синхротронных XANES исследований
Аннотация
Материалы системы олово-кислород и тонкопленочные структуры на их основе являются современными и актуальными для создания широкого ряда электронных приборов, например, резистивных газовых сенсоров высокой чувствительности и малого времени срабатывания при низком энергопотреблении и высокой технологичности. Важным направлением в проработке таких материалов и структур является управление свойствами при вариации технологических режимов формирования. Востребованной является информация о составе, локальном атомном и электронном строении тонких слоев системы олово-кислород при вариации подходов к их получению.
Работа посвящена исследованию электронного строения тонких слоев оксидов олова, полученных современными методами молекулярно-лучевой эпитаксии и магнетронного распыления. Проведено исследование локальной парциальной плотности электронных состояний в зоне проводимости методом спектроскопии ближней тонкой структуры краев рентгеновского поглощения олова и кислорода. Данные получены с использованием высокоинтенсивного синхротронного излучения, позволяющего варьировать энергию квантов монохроматизированного излучения без потерь в интенсивности, что необходимо для получения рентгеноспектральных данных высокого разрешения.
Показано, что состав, локальное атомное окружение, электронный спектр и их особенности зависят от технологии формирования и условий хранения исследованных структур. Синхротронные рентгеноспектральные данные показывают наличие промежуточных оксидов системы олово-кислород в изученных материалах после продолжительного хранения в лабораторных условиях. Полученные данные указывают на возможность управляемой вариации состава, локального атомного окружения и электронного спектра тонкопленочных структур оксидов олова малой толщины. Результаты работы могут быть использованы при формировании и последующей модификации тонких и сверхтонких слоев оксидов олова методами магнетронного распыления и молекулярно-лучевой эпитаксии, а также при дальнейшем их применении в качестве активных слоев устройств микроэлектроники
Скачивания
Литература
Chopra K. L., Major S., Pandya D. K. Transparent conductors – А status review. Thin Solid Films. 1983;102: 1–46. https://doi.org/10.1016/0040-6090(83)90256-0
Lee S. U., Choi W. S., Hong B. Synthesis and characterization of SnO2 : Sb film by DC magnetron sputtering method for applications to transparent electrodes. Physica Scripta. 2007;129: 312–315. https://doi.org/10.1088/0031-8949/2007/T129/069
Niranjan R. S., Hwang Y. K., Kim D.-K., Jhung S. H., Chang J.-S., Mulla I. S. Nanostructured tin oxide: Synthesis and gas-sensing properties. Materials Chemistry and Physics. 2005;92: 384–388. https://doi.org/10.1016/j.matchemphys.2005.01.050
Subramanian N. S., Santhi B., Sundareswaran S., Venkatakrishnan K. S. Studies on spray deposited SnO2, Pd:SnO2 and F:SnO2 thin films for gas sensor applications. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry. 2006;36: 131–135. https://doi.org/10.1080/15533170500478883
Tonkikh A. A., Zakharov N. D., Eisenschmidt C., Leipner H. S., Werner P. Aperiodic SiSn/Si multilayers for thermoelectric applications. Journal of Crystal Growth. 2014;392: 49–51. http://doi.org/10.1016/j.jcrysgro.2014.01.047
Arthur J. R. Molecular beam epitaxy. Surface Science. 2002;500(1-3):189–217. https://doi.org/10.1016/S0039-6028(01)01525-4
Wang T., Prakash A., Warner E., Gladfelter W. L., Jalan B. Molecular beam epitaxy growth of SnO2 using a tin chemical precursor. Journal of Vacuum Science & Technology A. 2015;33(2): 020606-1-4. http://doi.org/10.1116/1.4913294
Rosental A., Tarre A., Gerst A., … Uustare T. Epitaxial single and double nanolayers of SnO2 and TiO2 for resistive gas sensors. IEEE Sensors Journal. 2013;13(5): 1648–1655. https://doi.org/10.1109/JSEN.2013.2238227
Gangwar A. K., Godiwal R., Jaiswal J., … Singh P. Magnetron configurations dependent surface properties of SnO2 thin films deposited by sputtering process. Vacuum. 2020;177: 109353-1-9. https://doi.org/10.1016/j.vacuum.2020.109353
Nguyen T. T., Dang H. P., Luc Q. H., Le T. Studying the influence of deposition temperature and nitrogen contents on the structural, optical, and electrical properties of N-doped SnO2 films prepared by direct current magnetron sputtering. Ceramics International. 2019;45: 9147–9156. https://doi.org/10.1016/j.ceramint.2019.01.255
Domashevskaya E. P., Chuvenkova O. A., Ryabtsev S. V., …Turishchev S. Yu. Electronic structure of undoped and doped SnOx nanolayers. Thin Solid Films. 2013;537(30): 137–144. https://doi.org/10.1016/j.tsf.2013.03.051
Brown F. C., Rustgi O. P. Extreme ultraviolet transmission of crystalline and amorphous silicon. Physical Review Letters. 1972;28: 497–500. https://doi.org/10.1103/PhysRevLett.28.497
Barranco A., Yubero F., Espinos J. P., Groening P., Gonzalez-Elipe A. R. Electronic state characterization of SiOx thin films prepared by evaporation. Journal of Applied Physics. 2005;97: 113714. https://doi.org/10.1063/1.1927278
Turishchev S. Yu., Parinova E. V., Pisliaruk A. K., … Sivakov V. Surface deep profile synchrotron studies of mechanically modified top-down silicon nanowires array using ultrasoft X-ray absorption near edge structure spectroscopy. Scientific Reports. 2019;9(8066): 1–7. https://doi.org/10.1038/s41598-019-44555-y
Koyuda D. A., Titova S. S., Tsurikova U. A., … Turishchev S. Yu. Composition and electronic structure of porous silicon nanoparticles after oxidation under air- or freeze-drying conditions. Materials Letters. 2022;312: 131608-1-3. https://doi.org/10.1016/j.matlet.2021.131608
Ming T., Turishchev S., Schleusener A., … Sivakov V. Silicon suboxides as driving force for efficient light-enhanced hydrogen generation on silicon nanowires. Small. 2021;19: 2007650-1-6. https://doi.org/10.1002/smll.202007650
Kucheyev S., Baumann T. F., Sterne P. A., … Willey T. M. Surface electronic states in three-dimensional SnO2 nanostructures. Physical Review B. 2005;72(3): 035404-1-5. https://doi.org/10.1103/PhysRevB.72.035404
Sharma A., Varshney M., Shin H. J., Chae K. H., Won S. O. X-ray absorption spectroscopy investigations on electronic structure and luminescence properties of Eu:SnO2-SnO nanocomposites. Current Applied Physics. 2016;16: 1342–1348. http://dx.doi.org/10.1016/j.cap.2016.08.005
Chuvenkova O. A., Domashevskaya E. P., Ryabtsev S. V., … Turishchev S. Yu. XANES and XPS investigations of surface defects in wire like SnO2 crystals. Physics of the Solid State. 2015;57(1): 153–161. https://doi.org/10.1134/s1063783415010072
Manyakin M. D., Kurganskii S. I., Dubrovskii O. I., … Turishchev S. Yu. Electronic and atomic structure studies of tin oxide layers using X-ray absorption near edge structure spectroscopy data modelling. Materials Science in Semiconductor Processing. 2019; 99: 28–33. https://doi.org/10.1016/j.mssp.2019.04.006
Domashevskaya E. P., Yurakov Yu. A., Ryabtsev S. V., Chuvenkova O. A., Kashkarov V. M., Turishchev S. Yu. Synchrotron investigations of the initial stage of tin nanolayers oxidation. Journal of Electron Spectroscopy and Related Phenomena. 2007;156–158: 340–343. httpa://doi.org/10.1016/j.elspec.2006.11.042
Stohr J. NEXAFS spectroscopy. Berin: Springer; 1996. 403 p.
Fedoseenko S. I., Iossifov I. E., Gorovikov S. A., … Kaindl G. Development and present status of the Russian–German soft X-ray beamline at BESSY II. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2001;470: 84–88. https://doi.org/10.1016/S0168-9002(01)01032-4
Lebedev A. M., Menshikov K. A., Nazin V. G., Stankevich V. G., Tsetlin M. B., Chumakov R. G. NanoPES photoelectron beamline of the Kurchatov Synchrotron Radiation Source. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2021;15: 1039–1044. https://doi.org/10.1134/S1027451021050335
Kasrai M., Lennard W. N., Brunner R. W., Bancroft G. M., Bardwell J. A., Tan K. H.Sampling depth of total electron and fluorescence measurements in Si L- and K-edge absorption spectroscopy. Applied Surface Science. 1 996; 99: 303–312. https://doiorg/10.1016/0169-4332(96)00454-0
Erbil A., Cargill III G. S., Frahm R., Boehme R. F. Total-electron-yield current measurements for near-surface extended x-ray-absorption fine structure. Physical Review B. 1988;37: 2450–2464. https://doi.org/10.1103/PhysRevB.37.2450
Copyright (c) 2024 Конденсированные среды и межфазные границы
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.