Theoretical and experimental study of the niobium dioxide electronic structure

Keywords: Computer modeling, Niobium dioxide, Electronic structure, Density of states, XANES, XPS, Core hole, Rutile

Abstract

The investigation of the niobium dioxide electron-energy structure is presented in the paper. The electronic structure computer modeling of the NbO2 with a rutile crystal structure has been performed using linearized augmented plane wave method. The energy band structure as well as total and partial densities of electronic states are calculated.

Experimental studies of the NbO2 sample electronic structure were carried out using synchrotron and laboratory X-rays sources. The X-ray photoelectron spectrum of the valence band and subvalent states of NbO2 and the spectrum of the X-ray absorption near edge structure near K-edge of the oxygen atom in NbO2 have been recorded.

The spectra of the X-ray absorption near edge structure of the oxygen and niobium atoms K-edges are modeled. The calculated spectra make it possible to reliably interpret the data from the synchrotron experiment. It is shown that for NbO2 the spectrum calculated for the ground energy state without using the supercell and core hole modeling method demonstrates high agreement with the experiment

Downloads

Author Biographies

Maxim D. Manyakin, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Phys.-Math.), Researcher, Joint Scientific and Educational Laboratory “Atomic and Electronic Structure of Functional Materials” of Voronezh State University and the National Research Center «Kurchatov institute», Voronezh State University (Voronezh, Russian Federation)

Sergey I. Kurganskii, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Dr. Sci. (Phys.-Math.), Professor of the Solid State Physics and Nanostructure Department, Voronezh State University (Voronezh, Russian Federation)

Iuliia S. Kakuliia, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Teacher of General Physics Department, Voronezh State University (Voronezh, Russian Federation)

Sofiia S. Titova, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Teacher of General Physics Department, Voronezh State University, (Voronezh, Russian Federation)

Olga A. Chuvenkova, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Phys.-Math.), Senior Researcher, Joint Scientific and Educational Laboratory «Atomic and Electronic Structure of Functional Materials» of Voronezh State University and the National Research Center «Kurchatov Institute», Voronezh State University (Voronezh, Russian Federation)

Sergey Yu. Turishchev, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Dr. Sci. (Phys.-Math.), Associate Professor, Head of the General Physics Department, Voronezh State University (Voronezh, Russian Federation)

References

Zhou Y., Ramanathan S. Mott memory and neuromorphic devices. Proceedings of the IEEE. 2015;103(8): 1289–1310. https://doi.org/10.1109/JPROC.2015.2431914

Joshi T., Cirino E., Morley S. A., Lederman D. Thermally induced metal-to-insulator transition in NbO2 thin films: modulation of the transition temperature by epitaxial strain. Physical Review Materials. 2019;3: 124602. https://doi.org/10.1103/PhysRevMaterials.3.124602

Music D., Krause A. M., Olsson P. A. T. Theoretical and experimental aspects of current and future research on NbO2 thin film devices. Crystals. 2021;11: 217. https://doi.org/10.3390/cryst11020217

Manning T. D., Parkin I. P., Pemble M. E., Sheel D., Vernardou D. Intelligent window coatings: atmospheric pressure chemical vapor deposition of tungsten-doped vanadium dioxide. Chemistry of Materials. 2004;16(4): 744–749. https://doi.org/10.1021/cm034905y

Fajardo G. J. P., Howard S. A., Evlyukhin E., … Piper L. F. J. Structural phase transitions of NbO2: bulk versus surface. Chemistry of Materials. 2021;33: 1416−1425. https://doi.org/10.1021/acs.chemmater.0c04566

Park J., Hadamek T., Posadas A. B., Cha E., Demkov A. A., Hwang H. Multi-layered NiOy/NbOx/NiOy fast drift-free threshold switch with high Ion/Ioff ratio for selector application. Scientific Reports. 2017;7: 4068. https://doi.org/10.1038/s41598-017-04529-4

Shapiro S. M., Axe J. D., Shirane G., Raccah P. M. Neutron scattering study of the structural phase transition in NbO2. Solid State Communications. 1974;15: 377–381. https://doi.org/10.1016/0038-1098(74)90780-7

Posternak M., Freeman A. J., Ellis D. E. Electronic band structure, optical properties, and generalized susceptibility of NbO2. Physical Review B. 1979;19: 6555–6563. https://doi.org/10.1103/PhysRevB.19.6555

Eyert V. The metal-insulator transition of NbO2: an embedded Peierls instability. Europhysics Letters. 2002;58: 851–856. https://doi.org/10.1209/epl/i2002-00452-6

Bolzan A. A., Fong C., Kennedy B. J., Howard C. J. Structural studies of rutile-type metal dioxides. Acta Crystallographica. 1997;B53: 373–380. https://doi.org/10.1107/S0108768197001468

O’Hara A., Nunley T. N., Posadas A. B., Zollner S., Demkov A. A. Electronic and optical properties of NbO2. Journal of Applied Physics. 2014;116: 213705. https://doi.org/10.1063/1.4903067

Jiang N., Spence J. C. H. Electron energy-loss spectroscopy of the O K edge of NbO2, MoO2, and WO2. Physical Review B. 2004;70: 245117. https://doi.org/10.1103/PhysRevB.70.245117

Blaha P., Schwarz K., Tran F., Laskowski R., Madsen G.K.H., Marks L.D. WIEN2k: An APW+lo program for calculating the properties of solids. The Journal of Chemical Physics. 2020;152: 074101. https://doi.org/10.1063/1.5143061

Perdew J. P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters. 1996;77: 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865

Manyakin M. D., Kurganskii S. I. Electronic structure of germanium dioxide with rutile structure according to ab initio computer simulation data. Condensed Matter and Interphases. 2023;25(4): 587–593. https://doi.org/10.17308/kcmf.2023.25/11478

Manyakin M. D., Kurganskii S. I. Electronic structure of stishovite SiO2. Journal of Physics: Conference Series. 2019;1352: 012032. https://doi.org/10.1088/1742-6596/1352/1/012032

Turishchev S., Schleusener A., Chuvenkova O., … Sivakov V. Spectromicroscopy studies of silicon nanowires array covered by tin oxide layers. Small. 2023;19(10): 2206322. https://doi.org/10.1002/smll.202206322

https://www.sigmaaldrich.com/RU/en

Lebedev A. M., Menshikov K. A., Nazin V. G., Stankevich V. G., Tsetlin M. B., Chumakov R. G. NanoPES photoelectron beamline of the Kurchatov synchrotron radiation source. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2021;15(5): 1039–1044. https://doi.org/10.1134/S1027451021050335

Moulder J. F., Stickle W. F., Sobol P. E., Bomben K. D. Handbook of X-ray photoelectron spectroscopy. Physical Electronics Division. Eden Prairie, Minnesota: Perkin-Elmer Corporation; 1992. 261 p.

Crist B. V. Handbook of Mmonochromatic XPS Spectra: the elements of native oxides. Mountain View: Wiley; 2000. 500 p.

Xu J. H., Jarlborg T., Freeman A. J. Self-consistent band structure of the rutile dioxides NbO2, RuO2, and IrO2. Physical Review B. 1989;40: 7939–7949. https://doi.org/10.1103/PhysRevB.40.7939

Frati F., Hunault M. O. J. Y., de Groot F. M. F. Oxygen K‑edge X‑ray absorption spectra. Chemical Reviews. 2020;120(9): 4056–4110. https://doi.org/10.1021/acs.chemrev.9b00439

Kuznetsov M. V., Razinkin A. S., Shalaeva E. V. Photoelectron spectroscopy and diffraction of surface nanoscale NbO/Nb(110) structures. Journal of Structural Chemistry. 2009;(50): 514–521. https://doi.org/10.1007/s10947-009-0079-y

Beatham N., Orchard A. F. X-ray and UV photoelectron spectra of the oxides NbO2, MoO2 and RuO2. Journal of Electron Spectroscopy and Related Phenomena. 1979;16: 77–86. https://doi.org/10.1016/0368-2048(79)85006-9

Fujiwara K., Tsukazaki A. Formation of distorted rutile-type NbO2, MoO2, and WO2 films by reactive sputtering. Journal of Applied Physics. 2019;125: 085301. https://doi.org/10.1063/1.5079719

Wahila M. J., Paez G., Singh C. N., … Piper L. F. J. Evidence of a second-order Peierls-driven metal-insulator transition in crystalline NbO2. Physical Review Materials. 2019;3: 074602. https://doi.org/10.1103/PhysRevMaterials. 3.074602

Berman S., Zhussupbekova A., Boschker J. E., … Zhussupbekov K. Reconciling the theoretical and experimental electronic structure of NbO2. Physical Review B. 2023;108: 155141. https://doi.org/10.1103/PhysRevB. 108.155141

Arnold A., Tao R., Klie R. F. Comparison of FEFF9 results of metallic niobium and niobium oxides to EELS. Journal of Undergraduate Research. 2012;5(1): 38–41. https://doi.org/10.5210/JUR.V5I1.7508

Bach D., Schneider R., Gerthsen D., Verbeeck J., Sigle W. EELS of niobium and stoichiometric niobium-oxide phases – part I: plasmon and near-edges fine structure. Microscopy and Microanalysis. 2009;15(6): 505–523. https://doi.org/10.1017/S143192760999105X

Liang Y., Vinson J., Pemmaraju S., Drisdell W. S., Shirley E. L., Prendergast D. Accurate X-ray spectral predictions: an advanced self-consistent-field approach inspired by many-body perturbation theory. Physical Review Letters. 2017;118: 096402. https://doi.org/10.1103/physrevlett.118.096402

Sahiner M. A., Nabizadeh A., Rivella D., Cerqueira L., Hachlica J., Morea R., Gonzalo J., Woicik J. C. Subtle local structural variations in oxygen deficient niobium germanate thin film glasses as revealed by x-ray absorption spectroscopy. Journal of Physics: Conference Series. 2016;712: 012103. https://doi.org/10.1088/1742-6596/712/1/012103

Published
2024-12-04
How to Cite
Manyakin, M. D., Kurganskii, S. I., Kakuliia, I. S., Titova, S. S., Chuvenkova, O. A., & Turishchev, S. Y. (2024). Theoretical and experimental study of the niobium dioxide electronic structure. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 27(1), 146-153. https://doi.org/10.17308/kcmf.2025.27/12492
Section
Original articles

Most read articles by the same author(s)