Electronic structure of germanium dioxide with rutile structure according to ab initio computer simulation data

Keywords: Computer simulation, Germanium dioxide, Electronic structure, Density of states, XANES, Core hole, Rutile

Abstract

     The article focuses on the electronic structure of the tetragonal crystalline modification of germanium dioxide. The electronic structure was theoretically studied by means of the full-potential linearized augmented plane wave method using the Wien2k software.
      Total and partial densities of electronic states were calculated. The spectra of the X-ray absorption near edge structure were simulated for various absorption edges of germanium and oxygen atoms. The Z+1 approximation method was used to calculate Ge K-, Ge L3- and O K absorption edges for the tetragonal modification of GeO2. The result obtained for the Ge K absorption edge is in good agreement with the experimental data.
       The Ge L3 spectrum was calculated for the first time, and the result is of predictive nature. In order to obtain a better agreement with the experimental calculations of the oxygen K absorption edge, besides the Z+1 approximation method, we also used the core hole method, including the simulation of a partial core hole. The study demonstrated that the use of a core hole with an electron charge of 0.7 results in a better agreement between the calculations and the experiment

Downloads

Download data is not yet available.

Author Biographies

Maxim D. Manyakin, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Phys.–Math.),
Researcher, Joint Scientific and Educational Laboratory
“Atomic and Electronic Structure of Functional
Materials” of Voronezh State University and the
National Research Center «Kurchatov institute»,
Voronezh State University, (Voronezh, Russian
Federation)

Sergey I. Kurganskii, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Dr. Sci. (Phys.-Math.),
Professor of the Solid State Physics and Nanostructure
Department, Voronezh State University (Voronezh,
Russian Federation)

References

Stapelbroek M., Evans B. D. Exciton structure in the u.v.-absorption edge of tetragonal GeO2. Solid State Communications. 1978;25: 959–962. https://doi.org/10.1016/0038-1098(78)90311-3

Nikisihina E. E., Lebedeva E. N., Piletsky A. V., Drobot D. V. Hydroxide and oxide of germanium(IV): synthesis and сhemical-physical properties. Fine Chemical Technologies. 2015;10(5):19–26. (In Russ.). Available at: https://www.finechem-mirea.ru/jour/article/view/254?locale=ru_RU

Peng M., Li Y., Gao J., Zhang D., Jiang Z., Sun X. Electronic structure and photoluminescence origin of single-crystalline germanium oxide nanowires with green light emission. The Journal of Physical Chemistry C. 2011;115: 11420–11426. https://doi.org/10.1021/jp201884y

Armelao L., Heigl F., Kim P.-S. G., Rosenberg R. A., Regier T. Z., Sham T.-K. Visible emission from GeO2 nanowires: site-specific insights via X-ray excited optical luminescence. The Journal of Physical Chemistry C. 2012;116(26): 14163–14169. https://doi.org/10.1021/jp3040743

Samanta A., Jain M., Singh A. K. Ultra-sensitive pressure dependence of bandgap of rutile-GeO2 revealed by many body perturbation theory. The Journal of Chemical Physics. 2015;143: 064703. https://doi.org/10.1063/1.4928526

Dinsdale A. T., Akhmetova A., Khvan A. V., Aristova N. A сritical assessment of thermodynamic and phase diagram data for the Ge-O system. Journal of Phase Equilibria and Diffusion. 2015;36: 254–261. https://doi.org/10.1007/s11669-015-0379-1

Torrey J. D., Vasko S. E., Kapetanovic A., Rolandi M. Scanning probe direct-write of germanium nanostructures. Advanced Materials. 2010;22: 4639–4642. https://doi.org/10.1002/adma.201001987

Wysokowski M., Motylenko M., Beyer J., … Ehrlich H. Extreme biomimetic approach for developing novel chitin-GeO2 nanocomposites with photoluminescent properties. Nano Research. 2015;8: 2288–2301. https://doi.org/10.1007/s12274-015-0739-5

Baur W. H. The rutile type and its derivatives. Crystallography Reviews. 2007;13(1): 65–113. http://dx.doi.org/10.1080/08893110701433435

Lim H. Y., Park S. O., Kim S. H., Jung G. Y., Kwak S. K. First-principles design of rutile oxide heterostructures for oxygen evolution reactions. Frontiers in Energy Research. 2021;9: 606313. https://doi.org/10.3389/fenrg.2021.606313

Stohr J. NEXAFS spectroscopy. Springer-Verlag Berlin Heidelberg; 1992. 404 p. https://doi.org/10.1007/978-3-662-02853-7

Okuno M., Yin C. D., Morikawa H., Marumo F., Oyanagi H. A high resolution exafs and near edge study of GeO2 glass. Journal of Non-Crystalline Solids. 1986;87: 312–320. https://doi.org/10.1016/S0022-3093(86)80005-9

Itie J. P., Polian A., Calas G., Petiau J., Fontaine A. , Tolentino H. Pressure-induced coordination changes in crystalline and vitreous GeO2. Physical Review Letters. 1989;63: 398–401. https://doi.org/10.1103/PhysRevLett.63.398

Majérus O., Cormier L., Itié J.-P., Galoisy L., Neuville D. R., Calas G. Pressure-induced Ge coordination change and polyamorphism in SiO2–GeO2 glasses. Journal of Non-Crystalline Solids. 2004;345- 346: 34–38. https://doi.org/10.1016/j.jnoncrysol.2004.07.039

Cabaret D., Mauri F., Henderson G. S. Oxygen K-edge XANES of germanates investigated using firstprinciples calculations. Physical Review B. 2007;75: 184205. https://doi.org/10.1103/PhysRevB.75.184205

Wang H. M., Henderson G. S. Investigation of coordination number in silicate and germanate glasses using O K-edge X-ray absorption spectroscopy. Chemical Geology. 2004;213: 17–30. https://doi.org/10.1016/j.chemgeo.2004.08.029

Ohtaka O., Yoshiasa A., Fukui H., … Nishihata Y. Structural changes of quartz-type crystalline and vitreous GeO2 under pressure. Journal of Synchrotron Radiation. 2001;8: 791–793. https://doi.org/10.1107/S0909049500018306

Manyakin M. D., Kurganskii S. I., Dubrovskii O. I., … Turishchev S. Yu. Electronic and atomic structure studies of tin oxide layers using X-ray absorption near edge structure spectroscopy data modelling. Materials Science in Semiconductor Processing. 2019;99: 28–33. https://doi.org/10.1016/j.mssp.2019.04.006

Svane A., Antoncik E. Electronic structure of rutile SnO2, GeO2 and TeO2. Journal of Physics and Chemistry of Solids. 1987;48(2): 171–180. https://doi.org/10.1016/0022-3697(87)90081-3

Christie D. M., Chelikowsky J. R. Electronic and structural properties of germania polymorphs. Physical Review B. 2000;62: 14703. https://doi.org/10.1103/PhysRevB.62.14703

Liu Q.-J., Liu Z.-T., Feng L.-P., Tian H. Firstprinciples study of structural, elastic, electronic and optical properties of rutile GeO2 and a-quartz GeO2. Solid State Sciences. 2010;12(10): 1748–1755. https://doi.org/10.1016/j.solidstatesciences.2010.07.025

Sevik C., Bulutay C. Theoretical study of the insulating oxides and nitrides: SiO2, GeO2, Al2O3, Si3N4, and Ge3N4. Journal of Materials Science. 2007;42: 6555–6565. https://doi.org/10.1007/s10853-007-1526-9

Mengle K. A., Chae S., Kioupakis E. Quasiparticle band structure and optical properties of rutile GeO2, an ultra-wide-band-gap semiconductor. Journal of Applied Physics. 2019;126: 085703. https://doi.org/10.1063/1.5111318

Bolzan A. A., Fong C., Kennedy B. J., Howard C. J. Structural studies of rutile-type metal Ddioxides. Acta Crystallographica Section B Structural Science. 1997;B53: 373–380. https://doi.org/10.1107/S0108768197001468

Blaha P., Schwarz K., Tran F., Laskowski R., Madsen G. K. H., Marks L. D. WIEN2k: An APW+lo program for calculating the properties of solids. The Journal of Chemical Physics. 2020;152: 074101. https://doi.org/10.1063/1.5143061

Hebert C., Luitz J., Schattschneider P. Improvement of energy loss near edge structure calculation using Wien2k. Micron. 2003;34: 219–225. https://doi.org/10.1016/S0968-4328(03)00030-1

Duscher G., Buczkoa R., Pennycooka S. J., Pantelides S. T. Core-hole effects on energy-loss nearedge structure. Ultramicroscopy. 2001;86: 355–362. https://doi.org/10.1016/S0304-3991(00)00126-1

Luitz J., Maier M., Hebert C., Schattschneider P., Blaha P., Schwarz K., Jouffrey B. Partial core hole screening in the Cu L3 edge. The European Physical Journal B. 2001;21: 363–367. https://doi.org/10.1007/s100510170179

Kurganskii S. I., Manyakin M. D., Dubrovskii O. I., Chuvenkova O. A., Turishchev S. Yu., Domashevskaya E. P. Theoretical and experimental study of the electronic structure of tin dioxide. Physics of the Solid State. 2014;56: 1748–1753. https://doi.org/10.1134/S1063783414090170

Scanlon D. O., Kehoe A. B., Watson G. W., … Walsh A. Nature of the band gap and origin of the conductivity of PbO2 revealed by theory and experiment. Physical Review Letters. 2011;107: 246402. https://doi.org/10.1103/PhysRevLett.107.246402

Koller D., Tran F., Blaha P. Merits and limits of the modified Becke-Johnson exchange potential. Physical Review B. 2011;83: 195134. https://doi.org/10.1103/PhysRevB.83.195134

Manyakin M. D., Kurganskii S. I., Dubrovskii O. I., Chuvenkova O. A., Domashevskaya E. P., Turishchev S. Yu. Ab initio calculation and synchrotron X-ray spectroscopy investigations of tin oxides near the Sn L3 absorption edges. Physics of the Solid State. 2016;58: 2379–2384. https://doi.org/10.1134/S1063783416120192

Published
2023-10-12
How to Cite
Manyakin, M. D., & Kurganskii, S. I. (2023). Electronic structure of germanium dioxide with rutile structure according to ab initio computer simulation data. Condensed Matter and Interphases, 25(4), 587-593. https://doi.org/10.17308/kcmf.2023.25/11478
Section
Original articles