Synthesis and sensory properties of tungsten (VI) oxide-based nanomaterials

  • Alexey V. Shaposhnik Voronezh State Agrarian University 1 Michurin str., Voronezh 394087 Russian Federation https://orcid.org/0000-0002-1214-2730
  • Alexey A. Zviagin Voronezh State Agrarian University 1 Michurin str., Voronezh 394087 Russian Federation https://orcid.org/0000-0002-9299-6639
  • Stanislav V. Ryabtsev Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation https://orcid.org/0000-0001-7635-8162
  • Olga V. Dyakonova Voronezh State Agrarian University 1 Michurin str., Voronezh 394087 Russian Federation
  • Elena A. Vysotskaya Voronezh State Agrarian University 1 Michurin str., Voronezh 394087 Russian Federation
Keywords: MOX sensor, Sensitivity, Temperature modulation

Abstract

The purpose of this work was to develop a methodology for the synthesis of WO3-based nano-scale materials, to provide their characterization, and to study their sensory properties.

The nanopowder was made by slowly adding nitric acid to an aqueous solution of ammonium paratungstate,
(NH4)10W21O41·xH2O, followed by centrifugation, drying, and calcination. The size of tungsten trioxide grains, which was 10-20 nm, was determined by transmission electron microscopy. According to X-ray phase analysis, the powder, which was calcined at a temperature of 500 °C, mainly consisted of a triclinic phase. Subsequently, diammine palladium (II) nitrate and terpeniol were added to the WO3 nanopowder to form a paste. The resulting paste was applied to a special dielectric substrate and calcined to a temperature of 750 °C. As a result, a fragile tungsten trioxide-based gel formed. The mass fraction of palladium in the fragile gel was 3%. The sensory properties of the obtained gas-sensitive material were studied under stationary (300 °C) and non-stationary temperature conditions (quick heating to 450 °C and slow cooling to 100 °C).

A sharp increase in the sensitivity of a tungsten trioxide-based sensor was observed under non-stationary temperature conditions which depended on the composition of the gas-sensitive layer

Downloads

Download data is not yet available.

Author Biographies

Alexey V. Shaposhnik, Voronezh State Agrarian University 1 Michurin str., Voronezh 394087 Russian Federation

Dr. Sci. (Chem.), Professor at the Department of Chemistry, Voronezh State Agrarian University (Voronezh, Russian Federation)

Alexey A. Zviagin, Voronezh State Agrarian University 1 Michurin str., Voronezh 394087 Russian Federation

Cand. Sci. (Chem.), Associate Professor at the Department of Chemistry, Voronezh State Agrarian University (Voronezh, Russian Federation)

Stanislav V. Ryabtsev, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Dr. Sci. (Phys.–Math.), Head of the Laboratory, Voronezh State University, (Voronezh Russian Federation)

Olga V. Dyakonova, Voronezh State Agrarian University 1 Michurin str., Voronezh 394087 Russian Federation

Cand. Sci. (Chem.), Associate Professor at the Department of Chemistry, Voronezh State Agrarian University (Voronezh, Russian Federation)

Elena A. Vysotskaya, Voronezh State Agrarian University 1 Michurin str., Voronezh 394087 Russian Federation

Dr. Sci. (Biol.), Dean of the Faculty of Technology and Commodity Science, Voronezh State Agrarian University (Voronezh, Russian Federation)

References

Tesfamichael T., Ponzoni A., Ahsan M., Faglia G. Gas sensing characteristics of Fe-doped tungsten oxide thin films. Sensors and Actuators B: Chemical. 2012;168(2): 345–353. https://doi.org/10.1016/j.snb.2012.04.032

Tesfamichael T., Ahsan M., Notarianni M., … Bell J. Gas sensing of ruthenium implanted tungsten oxide thin films. Thin Solid Films. 2014;558: 416–422. https://doi.org/10.1016/j.tsf.2014.02.084

Zhang X., Dong B., Liu W., … Song H. Higly sensitive and selective acetone sensor based on threedimensional ordered WO3/Au nanocomposite with enhanced performance. Sensors Actuators, B Chemical. 2020;320(4): 128405. https://doi.org/10.1016/j.snb.2020.128405

Li H., Wu C.-H., Liu Y.-C., … Wu R.-J. Mesoporous WO3-TiO2 heterojunction for a hydrogen gas sensor. Sensors Actuators, B Chemical. 2021;341(2): 130035. https://doi.org/10.1016/j.snb.2021.130035

Nakate U. T., Yu Y. T., Park S. High performance acetaldehyde gas sensor based on p-n heterojunction interface of NiO nanosheets and WO3 nanorods. Sensors Actuators, B Chemical. 2021;344(5): 130264. https://doi.org/10.1016/j.snb.2021.130264

Shaposhnik A. V., Shaposhnik D. A., Turishchev S. Y., … Morante J. R. Gas sensing properties of individual SnO2 nanowires and SnO2 sol-gel nanocomposites. Beilstein Journal of Nanotechnology. 2019;10: 1380–1390. https://doi.org/10.3762/bjnano.10.136

Fan L., Xu N., Chen H., Zhou J., Deng S. A millisecond response and microwatt powerconsumption gas sensor: Realization based on crossstacked individual Pt-coated WO3 nanorods. Sensors Actuators B Chemical. 2021;346(2): 130545. https://doi.org/10.1016/j.snb.2021.130545

Mineo G., Moulaee K., Neri G., Mirabella S., Bruno E. H2 detection mechanism in chemoresistive sensor based on low-cost synthesized WO3 nanorods. Sensors Actuators B Chemical. 2021;348: 130704. https://doi.org/10.1016/j.snb.2021.130704

Hu Y., Li T., Zhang J., Guo J., Wang W., Zhang D. High-sensitive NO2 sensor based on p-NiCo2O4/n-WO3 heterojunctions. Sensors Actuators B Chemical. 2022;352(P2): 130912. https://doi.org/10.1016/j.snb.2021.130912

Karpe S. B., Bang A. D., Adhyapak D. P., Adhyapak P. V. Fabrication of high sensitive proto-type NOx sensor based on Pd nanoparticles loaded on WO3. Sensors Actuators B Chemical. 2022;354: 131203. https://doi.org/10.1016/j.snb.2021.131203

Yao G., Yu J., Wu H., … Tang Z. P-type Sb doping hierarchical WO3 microspheres for superior close to room temperature ammonia sensor. Sensors Actuators B Chemical. 2022;359: 131365. https://doi.org/10.1016/j.snb.2022.131365

Hu J., Xiong X., Guan W., Long H., Zhang L., Wang H. Self-templated flower-like WO3-In2O3 hollow microspheres for conductometric acetone sensors. Sensors Actuators B Chemical. 2022;361(10): 131705. https://doi.org/10.1016/j.snb.2022.131705

Sen S., Maity S., Kundu S. Fabrication of Fe doped reduced graphene oxide (rGO) decorated WO3 based low temperature ppm level acetone sensor: Unveiling sensing mechanism by impedance spectroscopy. Sensors Actuators B Chemical. 2022;361(3): 131706. https://doi.org/10.1016/j.snb.2022.131706

Wang X., Han W., Yang J., … Lu G. Conductometric ppb-level triethylamine sensor based on macroporous WO3-W18O49 heterostructures functionalized with carbon layers and PdO nanoparticles. Sensors Actuators B Chem. 2022;361(1): 131707. https://doi.org/10.1016/j.snb.2022.131707

Liu Y., Li X., Li X., … Liu Y. Highly permeable WO3/CuWO4 heterostructure with 3D hierarchical porous structure for high-sensitive room-temperature visible-light driven gas sensor. Sensors Actuators B Chemical. 2022;365(4): 131926. https://doi.org/10.1016/j.snb.2022.131926

Lee J., Kim S. Y., Yoo H. S., Lee W. Pd-WO3 chemiresistive sensor with reinforced self-assembly for hydrogen detection at room temperature. Sensors Actuators B Chemical. 2022;368(6): 132236. https://doi.org/10.1016/j.snb.2022.132236

Zhang Y., Wu C., Xiao B., … Lin H. ChemoresistiveNO2 sensor using La-doped WO3 nanoparticles synthesized by flame spray pyrolysis. Sensors Actuators B Chemical. 2022;369:(2): 132247. https://doi.org/10.1016/j.snb.2022.132247

He M., Xie L., Zhao X., Hu X., Li S., Zhu Z.-G. Highly sensitive and selective H2S gas sensors based on flower-like WO3/CuO composites operating at low/ room temperature. Journal of Alloys and Compounds. 2019;788: 36–43. https://doi.org/10.1016/j.jallcom.2019.01.349

Marikutsa A., Yang L., Kuznetsov A. N., Rumyantseva M., Gaskov A. Effect of W–O bonding on gas sensitivity of nanocrystalline Bi2WO6 and WO3. Journal of Alloys and Compounds. 2021;856: 158159. https://doi.org/10.1016/j.jallcom.2020.158159

Duong V. T., Nguyen C. T., Luong H. B., Nguyen D. C., Nguyen H. L. Ultralow-detection limit ammonia gas sensors at room temperature based on MWCNT/WO3 nanocomposite and effect of humidity. Solid State Sciences. 2021;113(11): 106534. https://doi.org/10.1016/j.solidstatesciences.2021.106534

Zhang C., Wu K., Liao H., Debliquy M. Room temperature WO3-Bi2WO6 sensors based on hierarchical microflowers for ppb-level H2S detection. Chemical Engineering Journal. 2022;430(P2): 132813. https://doi.org/10.1016/j.cej.2021.132813

Hwan Cho S., Min Suh J., Jeong B., … Won Jang H. Fast responding and highly reversible gasochromic H2 sensor using Pd-decorated amorphous WO3 thin films. Chemical Engineering Journal. 2022;446(P1): 136862. https://doi.org/10.1016/j.cej.2022.136862

Kumaresan M., Venkatachalam M., Saroja M., Gowthaman P. TiO2 nanofibers decorated with monodispersed WO3 heterostruture sensors for high gas sensing performance towards H2 gas. Inorganic Chemistry Communications. 2021;129(2): 108663. https://doi.org/10.1016/j.inoche.2021.108663

Chen L., Zhang Y., Sun B., … Tian C. Surface modification of WO3 nanoparticles with Pt and Ru for VOCs sensors. Chinese Journal of Analytical Chemistry. 2022: 100143. https://doi.org/10.1016/j.cjac.2022.100143

Hu J., Xiong X., Guan W., Long H. Designed construction of PdO@WO3 core–shell architecture as a high-performance acetone sensor. Journal of Environmental Chemical Engineering. 2021;9(6): 106852. https://doi.org/10.1016/j.jece.2021.106852

Sensor electronics, sensors: solid state sensors on silicon: a study guide for students of higher education institutions / E. P. Domashevskaya [et al.]; edited by A. M. Hoviv. Moscow: Yurayt Publishing House, 2020. 203 p. (in Russ). Available at: https://urait.ru/bcode/518779

Siciliano T., Tepore A., Micocci G., Serra A., Manno D., Filippo E. WO3 gas sensors prepared by thermal oxidization of tungsten. Sensors and Actuators B: Chemical. 2008;133(1): 321–326. https://doi.org/10.1016/j.snb.2008.02.028

Vallejos S., Khatko V., Calderer J., … Correig X. Micro-machined WO3-based sensors selective to oxidizing gases. Sensors and Actuators B: Chemical. 2008;132(1): 209–215. https://doi.org/10.1016/j.snb.2008.01.044

Zhang C., Boudiba A., Navio C., … Debliquy M. Highly sensitive hydrogen sensors based on cosputtered platinum-activated tungsten oxide films. International Journal of Hydrogen Energy. 2010;36(1): 1107–1114. https://doi.org/10.1016/j.ijhydene.2010.10.011

Yakovlev P. V., Shaposhnik A. V., Voishchev V. S., Kotov V. V., Ryabtsev S. V. Determination of gases using polymer-coated semiconductor sensors. Journal of Analytical Chemistry. 2002;57(3): 276–279. https://doi.org/10.1023/A:1014412919822

Shaposhnik A. V., Moskalev P. V., Zviagin A. A., … Vasiliev A. A. Selective determination of hydrogen sulfide using SnO2–Ag sensor working in nonstationary temperature regime. Chemosensors. 2021; 9(8): 203. https://doi.org/10.3390/chemosensors9080203

Shaposhnik A., Zvyagin А., Vasiliev A., Ryabtsev S., Shaposhnik D., Nazarenko I., Buslov V. Optimal temperature regimes of semiconductor sensors determination. Sorbtsionnye i Khromatograficheskie Protsessy. 2008;8(3): 501–506. (In Russ., abstract in Eng.). Available at: https://www.elibrary.ru/item.asp?id=11928774

Shaposhnik A., Moskalev P., Sizask E., Ryabtsev S., Vasiliev A. Selective detection of hydrogen sulfide and ethane by a single MOX-sensor. Sensors (Switzerland). 2019;19(5): 1135. https://doi.org/10.3390/s19051135

Published
2024-03-20
How to Cite
Shaposhnik, A. V., Zviagin, A. A., Ryabtsev, S. V., Dyakonova, O. V., & Vysotskaya, E. A. (2024). Synthesis and sensory properties of tungsten (VI) oxide-based nanomaterials. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 26(2), 349-355. https://doi.org/10.17308/kcmf.2024.26/11946
Section
Original articles

Most read articles by the same author(s)