The effect of the synthesis conditions on the crystal structure of palladium(II) oxide nanofilms

Keywords: Palladium, Palladium(II) oxide, Heterostructures, Crystal structure, Gas sensors

Abstract

      Nanocrystalline films of palladium(II) oxide obtained by oxidation of the initial metallic Pd layers with a thickness of 35 nm on Si (100) substrates in atmospheric air were studied using XRD analysis, TEM, and RHEED. PdO/SiO2/Si (100) heterostructures were synthesised in two stages. First, we obtained finely dispersed layers of metallic Pd on SiO2/Si (100) substrates with an ~ 300 nm SiO2 buffer layer using thermal sublimation in a high vacuum. The Pd layers were then oxidised in the temperature range Tox = 620 – 1100 K in atmospheric air (with the partial pressure of oxygen of about 21 kPa). The study determined that the deformation of the tetragonal crystal structure of homogeneous nanocrystalline PdO films is explained by an increase in the values of lattice parameters with the oxidation temperature. The deformation reaches its maximum values at Tox ~ 970 K. Comparison of the obtained results with the earlier data regarding PdO/SiO2/Si (100) heterostructures synthesised in a dry oxygen atmosphere (with the partial pressure of oxygen of about 101.3 kPa) demonstrated that PdO films synthesized in an oxygen atmosphere are characterized by a higher degree of deformation of the crystal structure.
       The effect of the oxidation temperature and O2 partial pressure on the increase in the tetragonal lattice parameters of the PdO films can be explained by the formation of interstitial oxygen atoms in the octahedral void in the centre of the palladium(II) oxide unit cell.

Downloads

Download data is not yet available.

Author Biographies

Alexander M. Samoilov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Dr. Sci. (Chem.), Associate
Professor, Professor at the Department of Materials
Science and Industry of Nanosystems, Voronezh State
University (Voronezh, Russian Federation).

Stanislav S. Kopytin, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

postgraduate student,
Department of Materials Science and Industry of
Nanosystems, Voronezh State University (Voronezh,
Russian Federation).

Sergey A. Ivkov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

PhD (Phys.-Math.), Leading
Electronics Engineer, Department of Solid State
Physics and Nanostructures, Voronezh State University
(Voronezh, Russian Federation).

Egor A. Ratkov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

master degree student, Voronezh
State University (Voronezh, Russian Federation).

Evgeny A. Tutov, Voronezh State Technical University, 84 20 letiya Oktyabrya st., Voronezh, 394006, Russian Federation

Dr. Sci. (Chem.), Associate
Professor, Department of Physics, Voronezh State
Technical University (Voronezh, Russian Federation).

References

Yamazoe N. Toward innovations of gas sensor technology. Sensors and Actuators B. 2005;108: 2–14. https://doi.org/10.1016/j.snb.2004.12.075

Seiyama T., Kato A., Fujiishi K., Nagatani M. A new detector for gaseous components using semiconductive thin films. Analytical Chemistry. 1962;34: 1502–1503. https://doi.org/10.1021/ac60191a001

Marikutsa A. V., Rumyantseva M. N., Gaskov A. M., Samoylov A. M. Nanocrystalline tin dioxide: Basics in relation with gas sensing phenomena. Part I. Physical and chemical properties and sensor signal formation. Inorganic Materials. 2015;51(13): 1329–1347. https://doi.org/10.1134/S002016851513004X

Ong C. B., Ng L. Y., Mohammad A. W. A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renewable and Sustainable Energy Reviews. 2018;81: 536–551. https://doi.org/10.1016/j.rser.2017.08.020

Korotcenkov G. Metal oxides for solid-state gas sensors: What determines our choice? Materials Science and Engineering: B. 2007; 139: 1–23. https://doi.org/10.1016/j.mseb.2007.01.044

Marikutsa A. V., Rumyantseva M. N., Gaskov A. M., Samoylov A. M Nanocrystalline tin dioxide: Basics in relation with gas sensing phenomena. Part II. Active centers and sensor behavior. Inorganic Materials. 2016;52(13): 1311-1338. https://doi.org/10.1134/S0020168516130045

Al-Hashem M., Akbar S., Morris P. Role of oxygen vacancies in nanostructured metal-oxide gas sensors: a review. Sensors Actuators B. 2019;301: 126845. https://doi.org/10.1016/j.snb.2019.126845

Korotcenkov G. Handbook of gas sensor materials. Properties, advantages and shortcomings for applications. Volume 1: Conventional approaches. Springer: New York Heidelberg Dordrecht London; 2013. 442 p. https://doi.org/10.1007/978-1-4614-7165-3

Toda K., Furue R., Hayami S. Recent progress in applications of graphene oxide for gas sensing: A review. Analytica Chimica Acta. 2015;878: 43–53. https://doi.org/10.1016/j.aca.2015.02.002

Kim H.-J., Lee J.-H. Highly sensitive and selective gassen sorsusingp-type oxide semiconductors: Overview. Sensors and Actuators B. 2014;192: 607–627. https://doi.org/10.1016/j.snb.2013.11.005

García-Serrano O., López-Rodríguez C., Andraca-Adame J. A., Romero-Paredes G., Pena-Sierra R. Growth and characterization of PdO films obtained by thermal oxidation of nanometric Pd films by electroless deposition technique. Materials Science and Engineering B. 2010;174: 273–278. https://doi.org/10.1016/j.mseb.2010.03.064

Ryabtsev S. V., Ievlev V. M., Samoylov A. M., Kuschev S. B., Soldatenko S. A. Microstructure and electrical properties of palladium oxide thin films for oxidizing gases detection. Thin Solid Films. 2017;636: 751−759. https://doi.org/10.1016/j.tsf.2017.04.009

Ryabtsev S. V., Shaposhnik A. V., Samoylov A. M., Sinelnikov A. A., Soldatenko S. A., Kuschev S. B., Ievlev V. M. Thin films of palladium oxide for gas sensors. Doklady Physical Chemistry. 2016;470(2): 158–161. https://doi.org/10.1134/s0012501616100055

Ryabtsev S. V., Iyevlev V. M., Samoylov A. M., Kuschev S. B., Soldatenko S. A. Real microstructure and electrical properties of palladium oxide thin films for oxidizing gases detecting. In: Science and Application of Thin Films, Conference & Exhibition (SATF-2016) Çeşme, Izmir, Turkey, September 19–23, 2016. Book of Abstracts: Izmir Institute of Technology. 2016: 44.

Ievlev V. M., Ryabtsev S. V., Shaposhnik A. V., Samoylov A. M., Kuschev S. B., Sinelnikov A. A. Ultrathin films of palladium oxide for oxidizing gases detecting. Procedia Engineering. 2016;168: 1106–1109. https://doi.org/10.1016/j.proeng.2016.11.357

Samoylov A. M., Gvarishvili L. J., Ivkov S. A., Pelipenko D. I., Badica P. Two-stage synthesis of pPalladium (II) oxide nanocrystalline powders for gas sensor application. Research & Development in Material Science. 2018;8(2). https://doi.org/10.31031/rdms.2018.08.000682

Ievlev V. M., Ryabtsev S. V., Samoylov A. M., Shaposhnik A. V., Kuschev S. B., Sinelnikov A. A. Thin and ultrathin of palladium oxide for oxidizing gases detection. Sensors and Actuators B. 2018;255(2): 1335–1342. https://doi.org/10.1016/j.snb.2017.08.121

Samoylov A. M., Ivkov S. A., Pelipenko D. I., … Badica P. Structural changes in palladium nanofilms during thermal oxidation. Inorganic Materials. 2020;56(10): 1020–1026. https://doi.org/10.1134/s0020168520100131

Samoylov A. M., Pelipenko D. I., Kuralenko N. S. Calculation of the nonstoichiometry area of nanocrystalline palladium (II) oxide films. Condensed Matter and Interphases. 2021;23(1): 62–72. https://doi.org/10.17308/kcmf.2021.23/3305

Samoylov A. M., Ryabtsev S. V., Popov V. N., Badica P. Palladium (II) oxide nanostructures as promising materials for gas sensors. In: Novel nanomaterials synthesis and applications. (George Kyzas ed.). UK, London: IntechOpen Publishing House; 2018. p. 211–229. https://doi.org/10.5772/intechopen.72323

Ryabtsev S. V., Ghareeb D. A. A., Sinelnikov A. A., Turishchev S. Yu., Obvintseva L. A., Shaposhnik A. V. Ozone detection by means of semiconductor gas sensors based on palladium (II) oxide. Condensed Matter and Interphases. 2021;23(1): 56–61. https://doi.org/10.17308/kcmf.2021.23/3303

Ryabtsev S. V., Ghareeb D. A. A., Turishchev S. Yu., Obvintseva L. A., Shaposhnik A. V., Domashevskaya E. P. Structural and gas-sensitive characteristics of thin semiconductor PdO films of various thicknesses during ozone detection. Semiconductors. 2022;56(13): 2057–2062. https://doi.org/10.21883/SC.2022.13.53898.9684

Samoylov A. M., Pelipenko D. I., Ivkov S. A., Tyulyakova E. S., Agapov B. L. Thermal stability limit of thin palladium(II) oxide films. Inorganic Materials. 2022;58(1): 48–55. https://doi.org/10.1134/s0020168522010095

Choudhury S., Bettya C. A., Bhattacharyyaa K., Saxenab V., Bhattacharya D. Nanostructured PdO thin film from Langmuir–Blodgett precursor for room temperature H2 gas sensing. ACS Applied Materials & Interfaces. 2016;8(26): 16997–17003. https://doi.org/10.1021/acsami.6b04120

Yang S., Li Q., Li C., … Fu Y. Enhancing the hydrogen-sensing performance of p-type PdO by modulating the conduction model. ACS Appl. Mater. Interfaces. 2021;13: 52754−52764. https://doi.org/10.1021/acsami.1c13034

Phase diagrams of binary metal systems: Handbook: in 3 volumes*. Lyakishev N. P. (ed.) Moscow: Metallurgy Publ.; 1996–2000. (In Russ.)

Hammond C. The basics of crystallography and diffraction. Fourth edition. International union of crystallography. Oxford University Press; 2015. 519 p.

ASTM JCPDS - International Centre for Diffraction Data. ã 1987-2009. JCPDS-ICDD. Newtown Square, PA 19073. USA.

Grier D., McCarthy G., North Dakota: State University, Fargo, N. Dakota, USA, ICDD Grant-in-Aid, JCPDS-ICDD, 1991. Card no. 43-1024.

Wiberg, E., Wiberg, N., Holleman, A. F. Inorganic Chemistry. 1st English Edition. San Diego: Academic Press; Berlin, New York: De Gruyter, USA; 2001. 1884 p.

Published
2023-05-11
How to Cite
Samoilov, A. M., Kopytin, S. S., Ivkov, S. A., Ratkov, E. A., & Tutov, E. A. (2023). The effect of the synthesis conditions on the crystal structure of palladium(II) oxide nanofilms. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 25(2), 225-236. https://doi.org/10.17308/kcmf.2023.25/11104
Section
Original articles

Most read articles by the same author(s)