The effect of the synthesis conditions on the crystal structure of palladium(II) oxide nanofilms
Abstract
Nanocrystalline films of palladium(II) oxide obtained by oxidation of the initial metallic Pd layers with a thickness of 35 nm on Si (100) substrates in atmospheric air were studied using XRD analysis, TEM, and RHEED. PdO/SiO2/Si (100) heterostructures were synthesised in two stages. First, we obtained finely dispersed layers of metallic Pd on SiO2/Si (100) substrates with an ~ 300 nm SiO2 buffer layer using thermal sublimation in a high vacuum. The Pd layers were then oxidised in the temperature range Tox = 620 – 1100 K in atmospheric air (with the partial pressure of oxygen of about 21 kPa). The study determined that the deformation of the tetragonal crystal structure of homogeneous nanocrystalline PdO films is explained by an increase in the values of lattice parameters with the oxidation temperature. The deformation reaches its maximum values at Tox ~ 970 K. Comparison of the obtained results with the earlier data regarding PdO/SiO2/Si (100) heterostructures synthesised in a dry oxygen atmosphere (with the partial pressure of oxygen of about 101.3 kPa) demonstrated that PdO films synthesized in an oxygen atmosphere are characterized by a higher degree of deformation of the crystal structure.
The effect of the oxidation temperature and O2 partial pressure on the increase in the tetragonal lattice parameters of the PdO films can be explained by the formation of interstitial oxygen atoms in the octahedral void in the centre of the palladium(II) oxide unit cell.
Downloads
References
Yamazoe N. Toward innovations of gas sensor technology. Sensors and Actuators B. 2005;108: 2–14. https://doi.org/10.1016/j.snb.2004.12.075
Seiyama T., Kato A., Fujiishi K., Nagatani M. A new detector for gaseous components using semiconductive thin films. Analytical Chemistry. 1962;34: 1502–1503. https://doi.org/10.1021/ac60191a001
Marikutsa A. V., Rumyantseva M. N., Gaskov A. M., Samoylov A. M. Nanocrystalline tin dioxide: Basics in relation with gas sensing phenomena. Part I. Physical and chemical properties and sensor signal formation. Inorganic Materials. 2015;51(13): 1329–1347. https://doi.org/10.1134/S002016851513004X
Ong C. B., Ng L. Y., Mohammad A. W. A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renewable and Sustainable Energy Reviews. 2018;81: 536–551. https://doi.org/10.1016/j.rser.2017.08.020
Korotcenkov G. Metal oxides for solid-state gas sensors: What determines our choice? Materials Science and Engineering: B. 2007; 139: 1–23. https://doi.org/10.1016/j.mseb.2007.01.044
Marikutsa A. V., Rumyantseva M. N., Gaskov A. M., Samoylov A. M Nanocrystalline tin dioxide: Basics in relation with gas sensing phenomena. Part II. Active centers and sensor behavior. Inorganic Materials. 2016;52(13): 1311-1338. https://doi.org/10.1134/S0020168516130045
Al-Hashem M., Akbar S., Morris P. Role of oxygen vacancies in nanostructured metal-oxide gas sensors: a review. Sensors Actuators B. 2019;301: 126845. https://doi.org/10.1016/j.snb.2019.126845
Korotcenkov G. Handbook of gas sensor materials. Properties, advantages and shortcomings for applications. Volume 1: Conventional approaches. Springer: New York Heidelberg Dordrecht London; 2013. 442 p. https://doi.org/10.1007/978-1-4614-7165-3
Toda K., Furue R., Hayami S. Recent progress in applications of graphene oxide for gas sensing: A review. Analytica Chimica Acta. 2015;878: 43–53. https://doi.org/10.1016/j.aca.2015.02.002
Kim H.-J., Lee J.-H. Highly sensitive and selective gassen sorsusingp-type oxide semiconductors: Overview. Sensors and Actuators B. 2014;192: 607–627. https://doi.org/10.1016/j.snb.2013.11.005
García-Serrano O., López-Rodríguez C., Andraca-Adame J. A., Romero-Paredes G., Pena-Sierra R. Growth and characterization of PdO films obtained by thermal oxidation of nanometric Pd films by electroless deposition technique. Materials Science and Engineering B. 2010;174: 273–278. https://doi.org/10.1016/j.mseb.2010.03.064
Ryabtsev S. V., Ievlev V. M., Samoylov A. M., Kuschev S. B., Soldatenko S. A. Microstructure and electrical properties of palladium oxide thin films for oxidizing gases detection. Thin Solid Films. 2017;636: 751−759. https://doi.org/10.1016/j.tsf.2017.04.009
Ryabtsev S. V., Shaposhnik A. V., Samoylov A. M., Sinelnikov A. A., Soldatenko S. A., Kuschev S. B., Ievlev V. M. Thin films of palladium oxide for gas sensors. Doklady Physical Chemistry. 2016;470(2): 158–161. https://doi.org/10.1134/s0012501616100055
Ryabtsev S. V., Iyevlev V. M., Samoylov A. M., Kuschev S. B., Soldatenko S. A. Real microstructure and electrical properties of palladium oxide thin films for oxidizing gases detecting. In: Science and Application of Thin Films, Conference & Exhibition (SATF-2016) Çeşme, Izmir, Turkey, September 19–23, 2016. Book of Abstracts: Izmir Institute of Technology. 2016: 44.
Ievlev V. M., Ryabtsev S. V., Shaposhnik A. V., Samoylov A. M., Kuschev S. B., Sinelnikov A. A. Ultrathin films of palladium oxide for oxidizing gases detecting. Procedia Engineering. 2016;168: 1106–1109. https://doi.org/10.1016/j.proeng.2016.11.357
Samoylov A. M., Gvarishvili L. J., Ivkov S. A., Pelipenko D. I., Badica P. Two-stage synthesis of pPalladium (II) oxide nanocrystalline powders for gas sensor application. Research & Development in Material Science. 2018;8(2). https://doi.org/10.31031/rdms.2018.08.000682
Ievlev V. M., Ryabtsev S. V., Samoylov A. M., Shaposhnik A. V., Kuschev S. B., Sinelnikov A. A. Thin and ultrathin of palladium oxide for oxidizing gases detection. Sensors and Actuators B. 2018;255(2): 1335–1342. https://doi.org/10.1016/j.snb.2017.08.121
Samoylov A. M., Ivkov S. A., Pelipenko D. I., … Badica P. Structural changes in palladium nanofilms during thermal oxidation. Inorganic Materials. 2020;56(10): 1020–1026. https://doi.org/10.1134/s0020168520100131
Samoylov A. M., Pelipenko D. I., Kuralenko N. S. Calculation of the nonstoichiometry area of nanocrystalline palladium (II) oxide films. Condensed Matter and Interphases. 2021;23(1): 62–72. https://doi.org/10.17308/kcmf.2021.23/3305
Samoylov A. M., Ryabtsev S. V., Popov V. N., Badica P. Palladium (II) oxide nanostructures as promising materials for gas sensors. In: Novel nanomaterials synthesis and applications. (George Kyzas ed.). UK, London: IntechOpen Publishing House; 2018. p. 211–229. https://doi.org/10.5772/intechopen.72323
Ryabtsev S. V., Ghareeb D. A. A., Sinelnikov A. A., Turishchev S. Yu., Obvintseva L. A., Shaposhnik A. V. Ozone detection by means of semiconductor gas sensors based on palladium (II) oxide. Condensed Matter and Interphases. 2021;23(1): 56–61. https://doi.org/10.17308/kcmf.2021.23/3303
Ryabtsev S. V., Ghareeb D. A. A., Turishchev S. Yu., Obvintseva L. A., Shaposhnik A. V., Domashevskaya E. P. Structural and gas-sensitive characteristics of thin semiconductor PdO films of various thicknesses during ozone detection. Semiconductors. 2022;56(13): 2057–2062. https://doi.org/10.21883/SC.2022.13.53898.9684
Samoylov A. M., Pelipenko D. I., Ivkov S. A., Tyulyakova E. S., Agapov B. L. Thermal stability limit of thin palladium(II) oxide films. Inorganic Materials. 2022;58(1): 48–55. https://doi.org/10.1134/s0020168522010095
Choudhury S., Bettya C. A., Bhattacharyyaa K., Saxenab V., Bhattacharya D. Nanostructured PdO thin film from Langmuir–Blodgett precursor for room temperature H2 gas sensing. ACS Applied Materials & Interfaces. 2016;8(26): 16997–17003. https://doi.org/10.1021/acsami.6b04120
Yang S., Li Q., Li C., … Fu Y. Enhancing the hydrogen-sensing performance of p-type PdO by modulating the conduction model. ACS Appl. Mater. Interfaces. 2021;13: 52754−52764. https://doi.org/10.1021/acsami.1c13034
Phase diagrams of binary metal systems: Handbook: in 3 volumes*. Lyakishev N. P. (ed.) Moscow: Metallurgy Publ.; 1996–2000. (In Russ.)
Hammond C. The basics of crystallography and diffraction. Fourth edition. International union of crystallography. Oxford University Press; 2015. 519 p.
ASTM JCPDS - International Centre for Diffraction Data. ã 1987-2009. JCPDS-ICDD. Newtown Square, PA 19073. USA.
Grier D., McCarthy G., North Dakota: State University, Fargo, N. Dakota, USA, ICDD Grant-in-Aid, JCPDS-ICDD, 1991. Card no. 43-1024.
Wiberg, E., Wiberg, N., Holleman, A. F. Inorganic Chemistry. 1st English Edition. San Diego: Academic Press; Berlin, New York: De Gruyter, USA; 2001. 1884 p.
Copyright (c) 2023 Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.