Investigation of the Magnetic Properties of Amorphous Multilayer Nanostructures [(CoFeB)60C40/SiO2]200 and [(CoFeB)34(SiO2)66/C]46 by the Transversal Kerr Effect

  • Elena A. Gan’shina Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow 119991, Russian Federation https://orcid.org/0000-0002-6709-158X
  • Vladimir V. Garshin Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow 119991, Russian Federation
  • Nikita S. Builov Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation
  • Nikolay N. Zubar Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow 119991, Russian Federation
  • Alexandr V. Sitnikov Voronezh State Technical University, Moskovsky pr., 14, Voronezh 394026, Russian Federation https://orcid.org/0000-0002-9438-9234
  • Evelina P. Domashevskaya Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation https://orcid.org/0000-0002-6354-4799
Keywords: amorphous magnetic multilayer nanostructures, metal-composite layers, nonmagnetic interlayers, magnetic clusters of CoFeB, transversal Kerr effect TKE, spectral dependences of TKE, field dependences of TKE, soft ferromagnets, superparamagnets.

Abstract

Magnetic properties in amorphous multilayer nanostructures [(CoFeB)60C40/SiO2]200 and [(CoFeB)34(SiO2)66/C]46 with different content of the CoFeB magnetic alloy in metal-composite layers and inverse location of non-metallic phases C and SiO2 in composite layers or in interlayers, were investigated by magneto-optical methods in the transversal Kerr effect (TKE) geometry.
Using the spectral and field dependences of the transversal Kerr effect TKE, it has been established that in the samples of both magnetic multilayer nanostructures (MLNS) the magneto-optical response and magnetic order are determined by the phase composition of the composite layers.
In samples of MLNS [(CoFeB)60C40/SiO2]200 with a post-percolation content of metal clusters in metal-composite layers, the maximum of absolute TKE values decrease by about 2.5 times compared with the initial amorphous Co40Fe40B20 alloy, while the field dependences of TKE in samples of this MLNS has features that are characteristic of soft ferromagnets.
In samples of MLNS [(CoFeB)34(SiO2)66/C]46 with a pre-percolation content of metal clusters in the oxide SiO2–x matrix of metal-composite layers, the TKE spectral dependences fundamentally differed from the TKE of the initial amorphous Co40Fe40B20 alloy both in shape and sign. The field dependences of the TKE in the samples of this MLN were linear, characteristic of superparamagnets.

 

 

 

References
1. Neugebauer C. A. Resistivity of cermet films
containing oxides of silicon. Thin Solid Films. 1970;6(6):
443–447. DOI: https://doi.org/10.1016/0040-6090(70)90005-2
2. Gittleman J. L., Goldstain Y., Bozowski S.
Magnetic roperties of granular nikel films. Physical
Review B. 1972;5(9): 3609–3621. DOI: https://doi.org/10.1103/physrevb.5.3609
3. Abeles B., Sheng P., Coutts M. D., Arie Y.
Structural and electrical properties of granular metal
films. Advances in Physics. 1975;24(3): 407–461. DOI:
https://doi.org/10.1080/00018737500101431
4. Helman J. S., Abeles B. Tunneling of spinpolarized
electrons and magnetoresistance in granular
Ni films. Physical Review Letters. 1976;37(21): 1429–
1433. DOI: https://doi.org/10.1103/physrevlett.37.1429
5. Sheng P., Abeles B., Arie Y. Hopping conductivity
in granular Metals. Physical Review Letters,1973;31(1):
44–47. DOI: https://doi.org/10.1103/physrevlett.31.44
6. Domashevskaya E. P., Builov N. S., Terekhov V. A.,
Barkov K. A., Sitnikov V. G. Electronic structure and
phase composition of dielectric interlayers in
multilayer amorphous nanostructure [(CoFeB)60C40/
SiO2]200. Physics of the Solid State. 2017;59(1): 168–173.
DOI: https://doi.org/10.1134/S1063783417010061
7. Domashevskaya E. P., Builov N. S., Terekhov V. A.,
Barkov K. I., Sitnikov V. G., Kalinin Y. E. Electronic
structure and phase composition of silicon oxide in
the metal-containing composite layers of a
[(Co40Fe40B20)34(SiO2)66/C]46 multilayer amorphous
nanostructure with carbon interlayers. Inorganic
Materials. 2017;53(9): 930–936. DOI: https://doi.org/10.1134/S0020168517090060
8. Domashevskaya E. P., Builov N. S., Lukin A. N.,
Sitnikov V. G. Investigation of interatomic interaction
in multilayer nanostructures [(CoFeB)60C40/SiO2]200 and
[(Co40Fe40B20)34(SiO2)66/C]46 with composite metalcontaining
layers by IR spectroscopy. Inorganic
Materials. 2018;54(2): 153–159. DOI: https://doi.org/10.7868/s0002337x18020069
9. Domashevskaya E. P., Builov N. S., Ivkov S. A.,
Guda A. A., Trigub A. L., Chukavin A. I. XPS and XAS
investigations of multilayer nanostructures based on
the amorphous CoFeB alloy. Journal of Electron
Spectroscopy and Related Phenomena. 2020;243:
146979–146989. DOI: https://doi.org/10.1016/j.elspec.2020.146979
10. Vonsovskii S. V. Magnetizm [Magnetism].
Moscow: Nauka Publ.; 1971. 1032 p.
11. Gan’shina E., Granovsky A., Gushin V.,
Kuzmichev M., Podrugin P., Kravetz A., Shipil E. Optical
and magneto-optical spectra of magnetic granular
alloys. Physica A: Statistical Mechanics and its
Applications. 1997;241(1-2): 45–51. DOI: https://doi.org/10.1016/s0378-4371(97)00057-5
12. Gan’shina E. A., Kim C. G., Kim C. O.,
Kochneva M. Yu., Perov N. S., Sheverdyaeva P. M.
Magnetostatic and magneto-optical properties of Cobased
amorphous ribbons. Journal of Magnetism and
Magnetic Materials. 2002;239(1-3): 484–486. DOI:
https://doi.org/10.1016/s0304-8853(01)00665-5
13. Gan’shina E. A., Vashuk M. V. Evolution of the
optical and magnetooptical properties of amorphous
metal-insulator nanocomposites. Journal of
Experimental and Theoretical Physics. 2004;98:1027–
1036. DOI: https://doi.org/10.1134/1.1767571
14. Shalygina E. E., Kharlamova A. M., Kurlyandskaya
G. V., Svalov A. V. Exchange interaction in Co/
Bi/Co thin-film systems with Bi interlayer. Journal of
Magnetism and Magnetic Materials. 2017;440: 136–139.
DOI: https://doi.org/10.1016/j.jmmm.2016.12.144
15. Gan’shina E., Garshin V., Perova N., Zykov G.,
Aleshnikov A., Kalinin Yu., Sitnikov A. Magnetooptical
properties of nanocomposites ferromagneticcarbon.
Journal of Magnetism and Magnetic Materials.
2019;470:135–138. DOI: https://doi.org/10.1016/j.jmmm.2017.11.038
16. Buravtsova V. E., Ganshina E. A., Kirov S. A., et.
al. Magnetooptical properties of layer-by-layer
deposited ferromagnet – dielectric nanocomposites.
Materials Sciences and Applications. 2013;4(4): 16–23.
DOI: http://dx.doi.org/10.4236/msa.2013.44A003
17. Stognei O. V., Kalinin Yu. E., Zolotukhin I. V.,
Sitnikov A. V., Wagner V., Ahlers F. J. Low temperature
behaviour of the giant magnetoresistivity in CoFeB
– SiOn granular composites. Journal of Physics:
Condensed Matter. 2003;15(24): 4267–4772. DOI:
https://doi.org/10.1088/0953-8984/15/24/320
18. Stognei O. V., Sitnikov A. V. Anisotropy of
amorphous nanogranular composites CoNbTa-SiO n
and CoFeB-SiOn. Physics Solid State. 2010;52: 2518–
2526. DOI: https://doi.org/10.1134/S1063783410120127
19. Dunets O. V., Kalinin Y. E., Kashirin M. A. et al.
Electrical and magnetic performance of multilayer
structures based on (Co40Fe40B20)33.9(SiO2)66.1 composite.
Technical Physics. 2013;58: 1352–1357. DOI: https://doi.org/10.1134/S1063784213090132
20. Gridnev S. A., Kalinin Yu. E., Sitnikov A. V.,
Stognei O. V. Nelineinye yavleniya v nano i
mikrogeterogennykh sistemakh [Nonlinear phenomena
in nano and microheterogeneous systems]. Moscow:
BINOM, Laboratoriya znanii Publ.; 2012. 352 p.
21. Mørup S., Tronc E. Superparamagnetic
relaxation of weakly interacting particles. Physical
Review Letters. 1994;72(20): 3278–3285. DOI: https://doi.org/10.1103/PhysRevLett.72.3278
22. Coey J. M. D., Khalafalla D. Superparamagnetic
g-Fe2O3. Physica Status Solidi (a) 1972;11(1): 229–241.
DOI: https://doi.org/10.1002/pssa.2210110125
23. Brown W. F. Thermal fluctuations of a singledomain
particle. Physical Review. 1963;130(5): 1677–
1685. DOI: https://doi.org/10.1103/physrev.130.1677

Downloads

Download data is not yet available.

Author Biographies

Elena A. Gan’shina, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow 119991, Russian Federation

DSc in Physics and Mathematics,
Full Professor, Leading Researcher, Department of
Magnetism, Faculty of Physics, Lomonosov Moscow
State University, Moscow, Russian Federation; e-mail:
eagan@mail.ru.

Vladimir V. Garshin, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow 119991, Russian Federation

Postgraduate Student,
Department of Magnetism, Faculty of Physics,
Lomonosov Moscow State University, Moscow, Russian
Federation; e-mail: irving. lambert@mail.ru.

Nikita S. Builov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Postgraduate Student of the
Department of Solid State Physics and Nanostructures,
Voronezh State University, Voronezh, Russian
Federation; e-mail: nik-bujlov@yandex.ru.

Nikolay N. Zubar, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow 119991, Russian Federation

Master of Science, Department
of Magnetism, Faculty of Physics, Lomonosov Moscow
State University, Moscow, Russian Federation; e-mail:
zubar.nn16@physics.msu.ru.

Alexandr V. Sitnikov, Voronezh State Technical University, Moskovsky pr., 14, Voronezh 394026, Russian Federation

DSc in Physics and
Mathematics, Full Professor, Professor of the
Department of Solid State Physics, Voronezh State
Teсhnical University, Voronezh, Russian Federation;
e-mail: sitnikov04@mail.ru.

Evelina P. Domashevskaya, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

DSc in Physics and
Mathematics, Full Professor, Chief Researcher of the
Department of Solid State Physics and Nanostructures,
Voronezh State University, Voronezh, Russian
Federation; e-mail: ftt@phys.vsu.ru

Published
2020-12-15
How to Cite
Gan’shina, E. A., Garshin, V. V., Builov, N. S., Zubar, N. N., Sitnikov, A. V., & Domashevskaya, E. P. (2020). Investigation of the Magnetic Properties of Amorphous Multilayer Nanostructures [(CoFeB)60C40/SiO2]200 and [(CoFeB)34(SiO2)66/C]46 by the Transversal Kerr Effect. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 22(4), 438-445. https://doi.org/10.17308/kcmf.2020.22/3114
Section
Статьи