Refinement of the phase diagram of the MnSe–In2Se3 system and the crystal structures of MnIn2Se4 and Mn2In2Se5 compounds
Abstract
Complex chalcogenides based on transition elements, in particular ternary compounds of the АВ2Х4 type (M = Mn, Fe, Co, Ni; B = Ga, In, Sb, Bi; X = S, Se, Te) are among the important functional materials. Compounds of this class exhibit the phenomena of electronically or optically controlled magnetism and are very promising for the creation of lasers, light modulators, photodetectors, and other functional devices controlled by a magnetic field. Recent studies demonstrated that these compounds can also find application in photocatalysis, photovoltaics, and thermoelectric converters.
The study presents new data on phase equilibria in the MnSe–In2Se3 system, obtained by differential thermal analysis, X-ray phase analysis, and scanning electron microscopy. Two ternary compounds, MnIn2Se4 with congruent melting at 1193 K and Mn2In2Se5, melting incongruently at 1196 K, were formed in the system. The first is a phase of variable composition and has a 5–6 mol. % homogeneity region towards an excess of In2Se3. Based on powder diffraction data, the Rietveld method was used to refine the crystal structures and lattice parameters of both ternary compounds
Downloads
References
Wyżga P., Veremchuk I., Bobnar M., Hennig C., Jasper A. L., Gumeniuk R. Ternary MIn2S4 (M = Mn, Fe, Co, Ni) thiospinels – crystal structure and thermoelectric properties. Zeitschrift für anorganische und allgemeine Chemie. 2020;646(14): 1091. https://doi.org/10.1002/zaac.202000014
Karthikeyan N., Aravindsamy G., Balamurugan P., Sivakumar K. Thermoelectric properties of layered type FeIn2Se4 chalcogenide compound. Materials Research Innovations. 2018;22(5): 278. https://doi.org/10.1080/14328917.2017.1314882
Hyunjung K., Tiwari A. P., Hwang E., … Hyoyoung L. FeIn2S4 nanocrystals: a ternary metal chalcogenide aterial for ambipolar field-effect transistors. Advanced Science. 2018;5(7): 1800068. https://doi.org/10.1002/advs.201800068
Yang J., Zhou Z., Fang J., … Wei Z. Magnetic and transport properties of a ferromagnetic layered semiconductor MnIn2Se4. Applied Physics Letters. 2019;115(22): 222101. https://doi.org/10.1063/1.5126233
Myoung B. R., Lim J. T., Kim C. S. Investigation of magnetic properties on spin-ordering effects of FeGa2S4 and FeIn2S4. Journals of Magnetism and Magnetic Materials. 2017;438: 121. https://doi.org/10.1016/j.jmmm.2017.04.056
Ranmohotti K. G. S., Djieutedjeu H., Lopez J., … Poudeu P. F. P. Coexistence of high-T c herromagnetism and n-type electrical conductivity in FeBi2Se4. Journal of the American Chemical Society. 2015;137(2): 691–698. https://doi.org/10.1021/ja5084255
Guratinder K., Schmidt M., Walker H. C., … Zaharko O. Magnetic correlations in the triangular antiferromagnet FeGa2S4. Physical Review B. 2021;104: 064412. https://doi.org/10.1103/PhysRevB.104.064412
Romero L., Pacheco J., Cadenas R. Calculation of the lattice energy and the energy gap of the magnetic demiconductor MnGa2Se4 using Hartree-Fock and density functional theory methods. Revista Mexicana de F ısica. 2016;62(6): 526–529. Режим доступа: https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0035-001X2016000600526
Verchenko V. Yu., Kanibolotskiy A.V., Bogach A. V., Znamenkova K. O., Shevelkov A. V. Ferromagnetic orrelations in the layered van der Waals sulfide FeAl2S4. Dalton Transactions. 2022;51(21): 8454–8460. https://doi.org/10.1039/d2dt00671e
Hwang Y., Choi J., Ha Y., Cho S., Park H. Electronic and optical properties of layered chalcogenide FeIn2Se4. Current Applied Physics. 2020;20(1): 212–218. https://doi.org/10.1016/j.cap.2019.11.005
Pauliukavets S. A., Bychek I. V., Patapovich M. P. Specific features of the growth, structure, and main hysicochemical properties of FeGa2Se4 single crystals. Inorganic Materials: Applied Research. 2018;9(2): 207–211. https://doi.org/10.1134/S2075113318020223
Chernoukhov I. V., Bogach A. V., Cherednichenko K. A., Gashigullin R. A., Shevelkov A. V., Verchenko V. Yu. Mn2Ga2S5 and Mn2Al2Se5 van der Waals chalcogenides: a source of atomically thin nanomaterials. Molecules. 2024;29(9): 12. https://doi.org/10.3390/molecules29092026
Verchenko Yu. V., Kanibolotskiy A.V., Chernoukhov I. V., ... Shevelkov A. V. Layered van der Waals halcogenides
FeAl2Se4, MnAl2S4, and MnAl2Se4: atomically thin triangular arrangement of transition-metal atoms. Inorganic Chemistry. 2023;62(19): 7557–7565. https://doi.org/10.1021/acs.inorgchem.3c00912
Otrokov M. M., Klimovskikh I. I., Bentmann H., ... Chulkov E. V. Prediction and observation of an intiferromagnetic topological insulator. Nature. 2019;576: 416–422. https://doi.org/10.1038/s41586-019-1840-9
Estyunin D. A., Klimovskikh I. I., Shikin A. M., ... Chulkov E. V. Signatures of temperature driven ntiferromagnetic transition in the electronic structure of topological insulator MnBi2Te4. Materials. 2020;8(2): 021105(1-7). https://doi.org/10.1063/1.5142846
Jahangirli Z. A., Alizade E. H., Aliev Z. S., … Chulkov E. V. Electronic structure and dielectric function of Mn-Bi-Te layered compounds. Journal of Vacuum Science and Technology B. 2019; 37(6): 062910. https://doi.org/10.1116/1.5122702
Garnica M., Otrokov M., Aguilar P. C., ... Miranda R. Native point defects and their implications for the Dirac point gap at MnBi2Te4(0001). npj Quantum Materials. 2022;7(7): 1. https://doi.org/10.1038/s41535-021-00414-6
Yonghao Y., Xintong W., Hao L., ... Qi-Kun X. Electronic states and magnetic response of MnBi2Te4 by scanning tunneling microscopy and spectroscopy. Nano Letters. 2020;20: 3271−3277. https://doi.org/10.1021/acs.nanolett.0c00031
Zhou L., Tan Z., Yan D., Fang Z., Shi Y., Weng H. Topological phase transition in the layered magnetic ompound MnSb2Te4: spin-orbit coupling and interlayer coupling dependence. Physical Review B. 2020;102: 085114(1-8). https://doi.org/10.1103/PhysRevB.102.085114
Zhu T., Bishop A. J., Zhou T. Synthesis, magnetic properties, and electronic structure of magnetic topological insulator MnBi2Se4. Nano Leterst. 2021;21(12): 5083–5090. https://doi.org/10.1021/acs.nanolett.1c00141
Swatek P., Wu Y., Wang L. L. Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4. Physical Review B: Condensed Matter and Materials Physics. 2020;101(16): 161109. https://doi.org/10.1103/PhysRevB.101.161109
Ovchinnikov D., Huang X., Lin Z., ... Xu X. Intertwined topological and magnetic orders in atomically thin chern insulator MnBi2Te4. Nano Letters. 2021;21(6): 2544. https://doi.org/10.1021/acs.nanolett.0c05117
Liang H., Feng T., Tan S., ... Cao L. Two-dimensional (2D) MnIn2Se4 nanosheets with porous structure: a novel photocatalyst for water splitting without sacrificial agents. Chemical Communications. 2019;55: 15061. https://doi.org/10.1039/C9CC08145C
Chen W., He Z. C., Huang G. B., Wu C.-L., Chen W.-F., Liu X.-H. Direct Z-scheme 2D/2D MnIn2S4/g-C3N4 architectures with highly efficient photocatalytic activities towards treatment of pharmaceutical wastewater and hydrogen evolution. Chemical Engineering Journal. 2019;359: 244. https://doi.org/10.1016/j.cej.2018.11.141
Song Y., Guo Y., Qi S., ... Lou Y. Cu7S4/MnIn2S4 heterojunction for efficient photocatalytic hydrogen generation. Journal of Alloys and Compounds. 2021;884: 161035. https://doi.org/10.1016/j.jallcom.2021.161035
Zhang B., Liu Y., Zhu H., Gu D., Zhou K., Hao J. Enhanced visible light photocatalytic performance of a novel FeIn2S4 microsphere/BiOBr nanoplate heterojunction with a Z-scheme configuration. Environmental Science and Pollution Research. 2023;30: 13438–13448 . https://doi.org/10.1007/s11356-022-22929-6
Sharan A., Sajjad M., Singh D. J., Singh N. Two-dimensional ternary chalcogenides FeX2Y4 (X = Ga, In; Y = S, Se, Te): Promising materials for sustainable energy. Physical Review Materials. 2022;6: 094005. https://doi.org/10.1103/PhysRevMaterials.6.094005
Muruganantham R., Chen J.-A., Yang C.-C. Spinel phase MnIn2S4 enfolded with reduced graphene oxide as composite anode material for lithium-ion storage. Materials Today Sustainability. 2023;21: 100278. https://doi.org/10.1016/j.mtsust.2022.100278
Wu P., Huang Ch., Hsieh Ch., Liu W. Synthesis and characterization of MnIn2S4/single-walled carbon anotube composites as an anode material for lithium-ion batteries. Nanomaterials. 2024;14(18): 716. https://doi.org/10.3390/nano14080716
Yan D., Li K., Yan Y., ... Yang H. Y. Cubic spinel XIn2S4 (X = Fe, Co, Mn): a new type of anode material for superfast and ultrastable Na-ion storage. Advanced Energy Materials. 2021;11: 2102137. https://doi.org/10.1002/aenm.202102137
Tarasov A. V., Makarova T. P., Estyunin D. A., ... Shikin A. M. Topological phase transitions driven by Sn doping in (Mn1−xSnx)Bi2Te4. Symmetry. 2023;15(2): 469. https://doi.org/10.3390/sym15020469
Djieutedjeu H., Lopez J. S., Lu R., ... Poudeu P. F. P. Charge disproportionation triggers bipolar doping in FeSb2−xSnxSe4 ferromagnetic semiconductors, enabling a temperature-induced lifshitz transition. Journal of the American Chemical Society. 2019;141(23): 9249. https://doi.org/10.1021/jacs.9b01884
Levy I., Forrester C., Ding X., Testelin C., Krusin-Elbaum L., Tamargo M. C. High Curie temperature ferromagnetic structures of (Sb2Te3)1−x(MnSb2Te4)x with x = 0.7–0.8. Scientific Reports. 2023;13: 7381. https://doi.org/10.1038/s41598-023-34585-y
Moroz N. A., Lopez J. S., Djieutedjeu H., ... Poudeu P. F. P. Indium preferential distribution enables electronic engineering of magnetism in FeSb2−xInxSe4 p‑type high-Tc ferromagnetic semiconductors. Chemistry of materials. 2016;28(23): 8570. https://doi.org/10.1021/acs.chemmater.6b03293
Levy I., Forrester C., Deng H., ... Tamargo M. C. Compositional control and optimization of molecular beam epitaxial growth of (Sb2Te3)1–x(MnSb2Te4)x magnetic topological insulators. Crystal Growth and Design. 2022;22(5): 3007. https://doi.org/10.1021/acs.cgd.1c01453
Liu Y., Kang Ch., Stavitski E., Attenkofer K., Kotliar G., Petrovic C. Polaronic transport and thermoelectricity in Fe1−xCoxSb2S4 (x = 0, 0.1, and 0.2). Physical Review B. 2018; 97(15): 155202. https://doi.org/10.1103/PhysRevB.97.155202
Babanly M. B., Yusibov Y. A., Imamaliyeva S. Z., Babanly D. M., Alverdiyev I. J. Phase diagrams in the development of the argyrodite family compounds and solid solutions based on them. Journal of Phase Equilibria and Diffusion. 2024;45: 228–255 https://doi.org/10.1007/s11669-024-01088-w
Babanly M. B., Mashadiyeva L. F., Imamaliyeva S. Z., Tagiev D. B., Babanly D. M., Yusibov Yu. A. Thermodynamic properties of complex copper chalcogenides (review). Chemical Problems. 2024;3(22): 243-280. https://doi.org/10.32737/2221-8688-2024-3-243-280
Imamaliyeva S. Z., Mekhdiyeva I. F., Babanly D. M., Zlomanov V. P., Tagiyev D. B., Babanly M. B. Solid-phase equilibria in the Tl2Te–Tl2Te3–TlErTe2 system and the thermodynamic properties of the Tl9ErTe6 and TlErTe2 compounds. Russian Journal of Inorganic Chemistry. 2020;65: 1762–1769. https://doi.org/10.1134/S0036023620110066
Orujlu E. N., Aliev Z. S., Babanly M. B. The phase diagram of the MnTe–SnTe–Sb2Te3 ternary system and synthesis of the iso- and aliovalent cation-substituted solid solutions. Calphad. 2022;76: 102398. https://doi.org/10.1016/j.calphad.2022.102398
Aghazade A. I., Babanly D. M., Zeynalova G. S., Gasymov V. A., Imamaliyeva S. Z. Phase relations in the Bi2- Bi2Se3-Bi2Te3 system and characterization of solid solutions. Azerbaijan Chemical Journal. 2024;1: 76–88. https://doi.org/10.32737/0005-2531-2024-76-88
Ismailova E.N., Mashadiyeva L.F., Bakhtiyarly I.B., Babanly M.B. Phase equilibria in the Cu2SnSe3–Sb2Se3–Se system. Condensed Matter and Interphases. 2023; 25(1): 47–54 https://doi.org/10.17308/kcmf.2023.25/10973
Mammadov S. H. The study of the quasi-triple system FeS-Ga2S3-Ag2S by a FeGa2S4-AgGaS2 section. mondensed Matter and Interphases. 2020;22(2): 232–237.
Mammadov F. M., Imamaliyeva S. Z., Jafarov Ya. I., Bakhtiyarly I. B., Babanly M. B. Phase equilibria in the MnTе–MnGa2Te4–MnIn2Te4 system. Condensed Matter and Interphases. 2022;24(3): 335–344. https://doi.org/10.17308/kcmf.2022.24/9856
Mammadov F. M., Amiraslanov I. R., Imamaliyeva S. Z., Babanly M. B. Phase relations in the FeSe–FeGa2Se4–FeIn2Se4 system: refinement of the crystal structures of FeIn2Se4 and FeGaInSe4. Journal of Phase Equilibria and Diffusion. 2019;40(6): 787–796. https://doi.org/10.1007/s11669-019-00768-2
Mammadov F. M., Agayeva R. M., Amiraslanov I. R., Babanly M. B. Revised phase diagram of the MnSe–Ga2Se3 system. Russian Journal of Inorganic Chemistry. 2024. https://doi.org/10.1134/S0036023623602611
Mamedov F. M., Babanly D. M., Amiraslanov I. R., Tagiev D. B., Babanly M. B. Physicochemical analysis of the FeSe–Ga2Se3–In2Se3 system. Russian Journal of Inorganic Chemistry. 2020;65(11): 1747–1755. https://doi.org/10.1134/s0036023620110121
Mammadov F. М., Amiraslanov I. R., Aliyeva Y. R., Ragimov S. S., Mashadiyeva L. F., Babanly M. B. Phase equilibria in the MnGa2Tе4-MnIn2Tе4 system, crystal structure and physical properties of MnGaInTе4. Acta Chimica Slovenica. 2019;66: 466. https://doi.org/10.17344/acsi.2019.4988
Mammadov F. M., Babanly D. M., Amiraslanov I. R., Tagiev D. B., Babanly M. B. FeS–Ga2S3–In2S3 system. Russian Journal of Inorganic Chemistry. 2021;66(10): 1533. https://doi.org/10.1134/s0036023621100090
Mammadov F. M., Niftiev N. N., Jafarov Ya. I., Babanly D. M., Bakhtiyarly I. B., Babanly M. B. Physicochemical analysis of the MnTе–Ga2Tе3–In2Tе3 system and AC electrical conductivity of MnGaInTe4. Russian Journal of onorganic Chemistry. 2022;67(10): 1623–1633. https://doi.org/10.1134/S0036023622600769
Babaeva P. K., Allazov M. R. Research in the field of inorganic and physical chemistry*. Collection of works / Z. G. Zulfugarov et al. (eds.). Institute of Inorganic and Physical Chemistry of the USSR Academy of Sciences. Baku: Elm, 1974. 318 p. (In Russ.)
Phase diagrams of binary metallic systems* / N. R. Lyakishev (rd.). Moscow: Mashinostroenie Publ.; 2001. Vol. 3. Book 1. p. 382.
Massalski T. B. Binary alloy phase diagrams - second edition.,Ohio: ASM International Materials Park; 1990. 3875 p.
Hussain R. A., Hussain I. Manganese selenide: synthetic aspects and applications. Journal of Alloys and Compounds. 2020;842(25): 155800. https://doi.org/10.1016/j.jallcom.2020.155800
Hyunjung K.,Vogelgesang R., Ramdas A. K., Peiris F. C., Bindley U., Furdyna J. K. MnSe: rocksalt versus zinc-blende structure. Physical Review B. 1998;58(11): 6700–6703. https://doi.org/10.1103/physrevb.58.6700
Jiping Ye J. Y., Sigeo Soeda S. S., Yoshio Nakamura Y. N., Osamu Nittono O. N. Crystal structures and phase transformation in In2Se3 compound semiconductor. Japanese Journal of Applied Physics. 1998; 37(8R): 4264. https://doi.org/10.1143/JJAP.37.4264
Emsley J. The elements. Oxford University Press; 1998. 300 p.
Range K.-J., Klement U., Döll G. Notizen: The crystal structure of MnIn2Se4, a ternary layered semiconductor. Zeitschrift Für Naturforschung B. 1991;46(8): 1122. https://doi.org/10.1515/znb-1991-0825
Range K.-J., Klemnt U., Döll G. Dimanganese diindium pentaselenide, Mn2In2Se5. Acta Crystallographica Section C Crystal Structure Communications. 1992;48(2): 355 https://doi.org/10.1107/S0108270191008521
Dotzel P., Schäfer H., Schön G. Zur Darstellung und Strukturchemie Ternärer Selenide des Magnesiums mit Indium und Aluminium. Zeitschrift für anorganische und allgemeine Chemie. 1976;426: 260-268. https://doi.org/10.1002/zaac.19764260305
Copyright (c) 2024 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases

This work is licensed under a Creative Commons Attribution 4.0 International License.