GaN micro- and nanostructures selectively grown on profiled sapphire substrates using PA-MBE without lithography

Keywords: Selective area growth, Whiskers, Microcrystals, Nanocolumns, Plasma-activated molecular beam epitaxy, Widegap semiconductor compounds A3N

Abstract

       Purpose: Development of technology for the formation of ordered arrays of nanocolumns (NCs) of GaN microcrystals using plasma-activated molecular beam epitaxy from nitrogen (PA-MBE) on profiled sapphire substrates (SPS) of large diameter with a micro-cone profile. The proposed method eliminates the use of low-performance and expensive nanolithography methods. The article is aimed at a deeper understanding of the processes that determine the growth kinetics of III-N nanocolumns using PA MBE on patterned sapphire substrates with multiple orientations of various non-polar and polar planes.
       A new technological process for the fabrication of GaN NCs using PA-MPE is proposed, which ensures selectivity of their growth at the tops of PPS micro-cones and suppresses growth on the semipolar planes of these substrates. GaN NCs and microcrystals were grown using PA-MBE on commercially available PPS.
       A technology has been developed for the formation of discharged arrays of GaN nanocolumns without the use of lithographic procedures. Modes have been established that allow the formation of microcrystals and NCs with different diameters: from 30 nm to several microns. A diagram of the growth of GaN by the PA MBE method on PPS has been constructed, demonstrating the boundaries of the technological regimes for the formation of GaN NCs and microcrystals with different surface topography

Downloads

Download data is not yet available.

Author Biographies

Alexey N. Semenov, Ioffe Institute, 26 Politekhnicheskaya st., St. Petersburg 194021, Russian Federation

Cand. Sci. (Phys.–Math.), Senior
Researcher, Ioffe Institute (St. Petersburg, Russian
Federation)

Dmitii V. Nechayev, Ioffe Institute, 26 Politekhnicheskaya st., St. Petersburg 194021, Russian Federation

Cand. Sci. (Phys.–Math.), Senior
Researcher, Ioffe Institute (St. Petersburg, Russia)

Sergei I. Troshkov, Ioffe Institute, 26 Politekhnicheskaya st., St. Petersburg 194021, Russian Federation

Cand. Sci. (Phys.–Math.), Senior
Researcher, Ioffe Institute (St. Petersburg, Russia)

Darya S. Berezina, Ioffe Institute, 26 Politekhnicheskaya st., St. Petersburg 194021, Russian Federation

postgraduate student, Young
Researcher, Ioffe Institute (St. Petersburg, Russia)

Abbas Arwa Saud, King Abdulaziz City for Science and Technology (KACST), King Abdullah Rd, Al Raed, Riyadh 12354, Saudi Arabia

Ph.D, Researcher, King Abdulaziz
City for Science and Technology (Riyadh, Saudi
Arabia)

Valentin N. Jmerik, Ioffe Institute, 26 Politekhnicheskaya st., St. Petersburg 194021, Russian Federation

Dr. Sci. (Phys.–Math.),
Professor, Chief Researcher, Ioffe Institute (St.
Petersburg, Russia)

References

Li S., Waag A. GaN based nanorods for solid state lighting. Journal of Applied Physics. 2012;111: 071101. https://doi.org/10.1063/1.3694674

Mandl M., Wang X., Schimpke T., … Strassburg M. Group III nitride core–shell nano- and microrods for optoelectronic applications. Physica Status Solidi (RRL) – Rapid Research Letters. 2013;7(10): 800–814. https://doi.org/10.1002/pssr.201307250

Zhao C.; Alfaraj N.; Subedi R. C., …Ooi B. S. IIInitride nanowires on unconventional substrates: From materials to optoelectronic device applications. Progress in Quantum Electronics. 2018;61: 1–31. https://doi.org/10.1016/j.pquantelec.2018.07.001

Chen F., Ji X., Lau S. P. Recent progress in group III-nitride nanostructures: from materials to applications. Materials Science and Engineering: R: Reports. 2020;142: 100578. https://doi.org/10.1016/j.mser.2020.100578

Schimpke T., Mandl M., Stoll I., … Strassburg M. Phosphor-converted white light fromblue-emitting InGaN microrod LEDs. Physica Status Solidi A. 2016;213(6): 1577–1584. https://doi.org/10.1002/pssa.201532904

Sun H., Li X. Recent advances on III-nitride nanowire light emitters on foreign substrates – toward flexible photonics. Physica Status Solidi A. 2019;216: 1800420. https://doi.org/10.1002/pssa.201800420

Meier J., Bacher G. Progress and challenges of InGaN/GaN-based core–shell microrod LEDs. Materials. 2022;15: 1626. https://doi.org/10.3390/ma15051626

Adhikari S., Kremer F., Lysevych M., Jagadishae C., Tan H. H. Core–shell GaN/AlGaN nanowires grown by selective area epitaxy. Nanoscale Horizons. 2023;8: 530. https://doi.org/10.1039/d2nh00500j

Zhao S., Djavid M., Mi Z. Surface emitting, high efficiency near-vacuum ultraviolet light source with aluminum nitride nanowires monolithically grown on silicon. Nano Letters. 2015;15: 7006–7009. https://doi.org/10.1021/acs.nanolett.5b03040

Mi Z., Zhao S., Woo S. Y., … Botton G. A. Molecular beam epitaxial growth and characterization of Al(Ga)N nanowire deep ultraviolet light emitting diodes and lasers. Journal of Physics D: Applied Physics. 2016;49: 364006. https://doi.org/10.1088/0022-3727/49/36/364006

Djavid M., Mi Z. Enhancing the light extraction efficiency of AlGaN deep ultraviolet light emitting diodes by using nanowire structures. Applied Physics Letters. 2016; 108: 051102. https://doi.org/10.1063/1.4941239

Zhao C., Ebaid M., Zhang H., … Ooi B. S. Quantified hole concentration in AlGaN nanowires for high-performance ultraviolet emitters. Nanoscale. 2018;10: 15980–15988. https://doi.org/10.1039/C8NR02615G

Holmes M. J., Choi K., Kako S., Arita M., Arakawa Y. Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot. Nano Letters. 2014;14(2): 982–986. https://doi.org/10.1021/nl404400d

Yamamoto T., Maekawa M., Imanishi Y., Ishizawa S., Nakaoka T., Kishino K. Photon correlation study of background suppressed single InGaN nanocolumns. Japanese Journal of Applied Physics. 2016;55: 04EK03. https://doi.org/10.7567/JJAP.55.04EK03

Mäntynen H., Anttu N., Sun Z., Lipsanen H. Single-photon sources with quantum dots in III–V nanowires. Nanophotonics. 2019;8(5): 747–769. https://doi.org/10.1515/nanoph-2019-0007

Arakawa Y., Holmes M. J. Progress in quantumdot single photon sources for quantum information technologies: A broad spectrum overview. Applied Physics Reviews. 2020;7: 021309. https://doi.org/10.1063/5.0010193

Dai J., Liu B., Zhuang Z., … Xie, Fabrication of AlGaN nanorods with different Al compositions for emission enhancement in UV range. Nanotechnology. 2017;28: 385205. https://doi.org/10.1088/1361-6528/aa7ba4

Nami M., Eller R. F., Okur S., Rishinaramangalam A. K., Liu S., Brener I., Feezell D. F. Tailoring the morphology and luminescence of GaN/InGaN coreshell nanowires using bottom-up selective-area epitaxy. Nanotechnology. 2017;28: 025202. https://doi.org/10.1088/0957-4484/28/2/025202

Hasan S. M. N., You W., Ghosh A., Sadaf S. Md., Arafin S. Selective area epitaxy of GaN nanostructures: MBE growth and morphological analysis. Crystal Growth & Design. 2023. https://doi.org/10.1021/acs.cgd.2c01506

Shubina T. V., Pozina G., Jmerik V. N., … Ivanov S. V. III-nitride tunable cup-cavities supporting quasi whispering gallery modes from ultraviolet to infrared. Scientific Reports. 2015;5: 17970. https://doi.org/10.1038/srep17970

Jmerik V. N., Kuznetsova N. V., Nechaev D. V., … Ivanov S. V. Selective area growth of N-polar GaN nanorods by plasma-assisted MBE on micro-cone-patterned c-sapphire substrates. Journal of Crystal Growth. 2017;477: 207–211. https://doi.org/10.1016/j.jcrysgro.2017.05.014

Semenov A. N., Nechaev D. V., Troshkov S. I., … Ivanov S. V. Features of the selective growth of GaN nanorods on patterned c-sapphire substrates of various configurations. Semiconductors. 2018;52(13): 1770–1774. https://doi.org/10.1134/S1063782618130158

Kim J., Choi U., Pyeon J., So B., Nam O. Deep-ultraviolet AlGaN/AlN core-shell multiple quantum wells on AlN nanorods via lithography-free method. Scientific Reports. 2018;8: 935. https://doi.org/10.1038/s41598-017-19047-6

Shen J., Yu Y., Wang J., Zheng Y., Gan Y., Li G. Insight into the Ga/In flux ratio and crystallographic plane dependence for MBE self-assembled growth of InGaN nanorods on patterned sapphire substrates. Nanoscale. 2020;12(6): 4018–4029. https://doi.org/10.1039/c9nr09767h

Ahn M. J., Jeong W. S., Shim K. Y., … Byun D. Selective-area growth mechanism of GaN microrods on a plateau patterned substrate. Materials. 2023;16: 2462. https://doi.org/10.3390/ma16062462

Wang J., Guo L. W., Jia H. Q., … Zhou J. M. Fabrication of patterned sapphire substrate by wet chemical etching for maskless lateral overgrowth of GaN. Journal of the Electrochemical Society. 2006;153(3): C182. https://doi.org/10.1149/1.2163813

Takano T., Mino T., Sakai J., Noguchi N., Tsubaki K., Hirayama H. Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency. Applied Physics Express. 2017;10: 031002. https://doi.org/10.7567/APEX.10.031002

Tautz M., Weimar A., Graßl C., Welzel M., Díaz D. D. Anisotropy and mechanistic elucidation of wet-chemical gallium nitride etching at the atomic level. Physica Status Solidi A. 2020;217(21): 2000221. https://doi.org/10.1002/pssa.202000221

Sun Q., Yerino C. D., Leung B., Han J., Coltrin M. E. Understanding and controlling heteroepitaxy with the kinetic Wulff plot: A case study with GaN.Journal of Applied Physics. 2011;110: 053517. https://doi.org/10.1063/1.3632073

Li H., Geelhaar L., Riechert H., Draxl C. Computing equilibrium shapes of wurtzite crystals: the example of GaN. Physical Review Letters. 2015;115: 085503. https://doi.org/10.1103/PhysRev-Lett.115.085503

Jmerik V. N., Nechaev D. V., Ivanov S. V. Kinetics of metal-rich PA molecular beam epitaxy of AlGaN heterostructures for mid-UV photonics. In: Molecular beam epitaxy (second edition). M. Henini (ed.). Elsevier; 2018. pp. 135–179. https://doi.org/10.1016/B978-0-12-812136-8.00008-6

Koblmüller G., Averbeck R., Riechert H., Pongratz P. Direct observation of different equilibrium Ga adlayer coverages and their desorption kinetics on GaN (0001) and (000-1) surfaces. Physical Review B. 2004;69: 035325. https://doi.org/10.1103/PhysRevB.69.035325

VanMil B. L., Guo H., Holbert L. J., … Myers T. H. High temperature limitations for GaN growth by RF-plasma assisted molecular beam epitaxy: Effects of active nitrogen species, surface polarity, and excess Ga-overpressure. Physica Status Solidi (c). 2005;2(7): 2174–2177. https://doi.org/10.1002/pssc.200461573

Fernández-Garrido S., Koblmüller G., Calleja E., Speck J. S. In situ GaN decomposition analysis by quadrupole mass spectrometry and reflection high-energy electron diffraction. Journal of Applied Physics. 2008;104: 033541. https://doi.org/10.1063/1.2968442

Published
2023-10-12
How to Cite
Semenov, A. N., Nechayev, D. V., Troshkov, S. I., Berezina, D. S., Saud, A. A., & Jmerik, V. N. (2023). GaN micro- and nanostructures selectively grown on profiled sapphire substrates using PA-MBE without lithography. Condensed Matter and Interphases, 25(4), 532-541. https://doi.org/10.17308/kcmf.2023.25/11482
Section
Original articles