GaN micro- and nanostructures selectively grown on profiled sapphire substrates using PA-MBE without lithography

Keywords: Selective area growth, Whiskers, Microcrystals, Nanocolumns, Plasma-activated molecular beam epitaxy, Widegap semiconductor compounds A3N


       Purpose: Development of technology for the formation of ordered arrays of nanocolumns (NCs) of GaN microcrystals using plasma-activated molecular beam epitaxy from nitrogen (PA-MBE) on profiled sapphire substrates (SPS) of large diameter with a micro-cone profile. The proposed method eliminates the use of low-performance and expensive nanolithography methods. The article is aimed at a deeper understanding of the processes that determine the growth kinetics of III-N nanocolumns using PA MBE on patterned sapphire substrates with multiple orientations of various non-polar and polar planes.
       A new technological process for the fabrication of GaN NCs using PA-MPE is proposed, which ensures selectivity of their growth at the tops of PPS micro-cones and suppresses growth on the semipolar planes of these substrates. GaN NCs and microcrystals were grown using PA-MBE on commercially available PPS.
       A technology has been developed for the formation of discharged arrays of GaN nanocolumns without the use of lithographic procedures. Modes have been established that allow the formation of microcrystals and NCs with different diameters: from 30 nm to several microns. A diagram of the growth of GaN by the PA MBE method on PPS has been constructed, demonstrating the boundaries of the technological regimes for the formation of GaN NCs and microcrystals with different surface topography


Download data is not yet available.

Author Biographies

Alexey N. Semenov, Ioffe Institute, 26 Politekhnicheskaya st., St. Petersburg 194021, Russian Federation

Cand. Sci. (Phys.–Math.), Senior
Researcher, Ioffe Institute (St. Petersburg, Russian

Dmitii V. Nechayev, Ioffe Institute, 26 Politekhnicheskaya st., St. Petersburg 194021, Russian Federation

Cand. Sci. (Phys.–Math.), Senior
Researcher, Ioffe Institute (St. Petersburg, Russia)

Sergei I. Troshkov, Ioffe Institute, 26 Politekhnicheskaya st., St. Petersburg 194021, Russian Federation

Cand. Sci. (Phys.–Math.), Senior
Researcher, Ioffe Institute (St. Petersburg, Russia)

Darya S. Berezina, Ioffe Institute, 26 Politekhnicheskaya st., St. Petersburg 194021, Russian Federation

postgraduate student, Young
Researcher, Ioffe Institute (St. Petersburg, Russia)

Abbas Arwa Saud, King Abdulaziz City for Science and Technology (KACST), King Abdullah Rd, Al Raed, Riyadh 12354, Saudi Arabia

Ph.D, Researcher, King Abdulaziz
City for Science and Technology (Riyadh, Saudi

Valentin N. Jmerik, Ioffe Institute, 26 Politekhnicheskaya st., St. Petersburg 194021, Russian Federation

Dr. Sci. (Phys.–Math.),
Professor, Chief Researcher, Ioffe Institute (St.
Petersburg, Russia)


Li S., Waag A. GaN based nanorods for solid state lighting. Journal of Applied Physics. 2012;111: 071101.

Mandl M., Wang X., Schimpke T., … Strassburg M. Group III nitride core–shell nano- and microrods for optoelectronic applications. Physica Status Solidi (RRL) – Rapid Research Letters. 2013;7(10): 800–814.

Zhao C.; Alfaraj N.; Subedi R. C., …Ooi B. S. IIInitride nanowires on unconventional substrates: From materials to optoelectronic device applications. Progress in Quantum Electronics. 2018;61: 1–31.

Chen F., Ji X., Lau S. P. Recent progress in group III-nitride nanostructures: from materials to applications. Materials Science and Engineering: R: Reports. 2020;142: 100578.

Schimpke T., Mandl M., Stoll I., … Strassburg M. Phosphor-converted white light fromblue-emitting InGaN microrod LEDs. Physica Status Solidi A. 2016;213(6): 1577–1584.

Sun H., Li X. Recent advances on III-nitride nanowire light emitters on foreign substrates – toward flexible photonics. Physica Status Solidi A. 2019;216: 1800420.

Meier J., Bacher G. Progress and challenges of InGaN/GaN-based core–shell microrod LEDs. Materials. 2022;15: 1626.

Adhikari S., Kremer F., Lysevych M., Jagadishae C., Tan H. H. Core–shell GaN/AlGaN nanowires grown by selective area epitaxy. Nanoscale Horizons. 2023;8: 530.

Zhao S., Djavid M., Mi Z. Surface emitting, high efficiency near-vacuum ultraviolet light source with aluminum nitride nanowires monolithically grown on silicon. Nano Letters. 2015;15: 7006–7009.

Mi Z., Zhao S., Woo S. Y., … Botton G. A. Molecular beam epitaxial growth and characterization of Al(Ga)N nanowire deep ultraviolet light emitting diodes and lasers. Journal of Physics D: Applied Physics. 2016;49: 364006.

Djavid M., Mi Z. Enhancing the light extraction efficiency of AlGaN deep ultraviolet light emitting diodes by using nanowire structures. Applied Physics Letters. 2016; 108: 051102.

Zhao C., Ebaid M., Zhang H., … Ooi B. S. Quantified hole concentration in AlGaN nanowires for high-performance ultraviolet emitters. Nanoscale. 2018;10: 15980–15988.

Holmes M. J., Choi K., Kako S., Arita M., Arakawa Y. Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot. Nano Letters. 2014;14(2): 982–986.

Yamamoto T., Maekawa M., Imanishi Y., Ishizawa S., Nakaoka T., Kishino K. Photon correlation study of background suppressed single InGaN nanocolumns. Japanese Journal of Applied Physics. 2016;55: 04EK03.

Mäntynen H., Anttu N., Sun Z., Lipsanen H. Single-photon sources with quantum dots in III–V nanowires. Nanophotonics. 2019;8(5): 747–769.

Arakawa Y., Holmes M. J. Progress in quantumdot single photon sources for quantum information technologies: A broad spectrum overview. Applied Physics Reviews. 2020;7: 021309.

Dai J., Liu B., Zhuang Z., … Xie, Fabrication of AlGaN nanorods with different Al compositions for emission enhancement in UV range. Nanotechnology. 2017;28: 385205.

Nami M., Eller R. F., Okur S., Rishinaramangalam A. K., Liu S., Brener I., Feezell D. F. Tailoring the morphology and luminescence of GaN/InGaN coreshell nanowires using bottom-up selective-area epitaxy. Nanotechnology. 2017;28: 025202.

Hasan S. M. N., You W., Ghosh A., Sadaf S. Md., Arafin S. Selective area epitaxy of GaN nanostructures: MBE growth and morphological analysis. Crystal Growth & Design. 2023.

Shubina T. V., Pozina G., Jmerik V. N., … Ivanov S. V. III-nitride tunable cup-cavities supporting quasi whispering gallery modes from ultraviolet to infrared. Scientific Reports. 2015;5: 17970.

Jmerik V. N., Kuznetsova N. V., Nechaev D. V., … Ivanov S. V. Selective area growth of N-polar GaN nanorods by plasma-assisted MBE on micro-cone-patterned c-sapphire substrates. Journal of Crystal Growth. 2017;477: 207–211.

Semenov A. N., Nechaev D. V., Troshkov S. I., … Ivanov S. V. Features of the selective growth of GaN nanorods on patterned c-sapphire substrates of various configurations. Semiconductors. 2018;52(13): 1770–1774.

Kim J., Choi U., Pyeon J., So B., Nam O. Deep-ultraviolet AlGaN/AlN core-shell multiple quantum wells on AlN nanorods via lithography-free method. Scientific Reports. 2018;8: 935.

Shen J., Yu Y., Wang J., Zheng Y., Gan Y., Li G. Insight into the Ga/In flux ratio and crystallographic plane dependence for MBE self-assembled growth of InGaN nanorods on patterned sapphire substrates. Nanoscale. 2020;12(6): 4018–4029.

Ahn M. J., Jeong W. S., Shim K. Y., … Byun D. Selective-area growth mechanism of GaN microrods on a plateau patterned substrate. Materials. 2023;16: 2462.

Wang J., Guo L. W., Jia H. Q., … Zhou J. M. Fabrication of patterned sapphire substrate by wet chemical etching for maskless lateral overgrowth of GaN. Journal of the Electrochemical Society. 2006;153(3): C182.

Takano T., Mino T., Sakai J., Noguchi N., Tsubaki K., Hirayama H. Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency. Applied Physics Express. 2017;10: 031002.

Tautz M., Weimar A., Graßl C., Welzel M., Díaz D. D. Anisotropy and mechanistic elucidation of wet-chemical gallium nitride etching at the atomic level. Physica Status Solidi A. 2020;217(21): 2000221.

Sun Q., Yerino C. D., Leung B., Han J., Coltrin M. E. Understanding and controlling heteroepitaxy with the kinetic Wulff plot: A case study with GaN.Journal of Applied Physics. 2011;110: 053517.

Li H., Geelhaar L., Riechert H., Draxl C. Computing equilibrium shapes of wurtzite crystals: the example of GaN. Physical Review Letters. 2015;115: 085503.

Jmerik V. N., Nechaev D. V., Ivanov S. V. Kinetics of metal-rich PA molecular beam epitaxy of AlGaN heterostructures for mid-UV photonics. In: Molecular beam epitaxy (second edition). M. Henini (ed.). Elsevier; 2018. pp. 135–179.

Koblmüller G., Averbeck R., Riechert H., Pongratz P. Direct observation of different equilibrium Ga adlayer coverages and their desorption kinetics on GaN (0001) and (000-1) surfaces. Physical Review B. 2004;69: 035325.

VanMil B. L., Guo H., Holbert L. J., … Myers T. H. High temperature limitations for GaN growth by RF-plasma assisted molecular beam epitaxy: Effects of active nitrogen species, surface polarity, and excess Ga-overpressure. Physica Status Solidi (c). 2005;2(7): 2174–2177.

Fernández-Garrido S., Koblmüller G., Calleja E., Speck J. S. In situ GaN decomposition analysis by quadrupole mass spectrometry and reflection high-energy electron diffraction. Journal of Applied Physics. 2008;104: 033541.

How to Cite
Semenov, A. N., Nechayev, D. V., Troshkov, S. I., Berezina, D. S., Saud, A. A., & Jmerik, V. N. (2023). GaN micro- and nanostructures selectively grown on profiled sapphire substrates using PA-MBE without lithography. Condensed Matter and Interphases, 25(4), 532-541.
Original articles