INTERATOMIC INERACTIONS IN AMORPHOUS COMPOSITES (CoFeB)x(TiO2)1–x WITH DIFFERENT CONTENT OF METAL AND DIELECTRIC COMPONENT ACCORDING TO IR SPECTROSCOPY

Keywords: amorphous metal-containing composites,, IR spectra,, vibration modes,, interatomic bonds

Abstract

Purpose. By a method of ion-beam sputtering of two targets (one of the CoFeB alloy, the second of TiO2 on a rotating glass-substrate substrate, a series of samples were obtained with a gradient of the composition and thickness of the composite (Co40Fe40B20)x(TiO2)1-x on the diffraction
patterns of amorphous composites, a halo was found corresponding to the average interatomic distance close in magnitude to the interplanar spacing of the most intense diffraction lines in CoFe alloys.
Results. Using IR spectroscopy, the modes were identifi ed that correspond to interatomic bonds in amorphous composites (CoFeB)x (TiO2)1-x of various compositions. The presence of bonds with oxygen of all elements of the composite Fe – O, Co – O, Ti – O, B – O, as well as the formation of
intermediate chemical bonds Ti – O – B and Ti – O – Co between the atoms of the dielectric and metal components of the composite has been established.
Conclusions. Based on the data obtained, a model of amorphous composites (Co40Fe40B20)x(TiO2)1-x is proposed, in which metal particles are represented as a nucleus of metal CoFe clusters with a shell of d-metals oxides and borides/oxyborides distributed in a dielectric matrix of titanium dioxide TiO2-x.

 

 

SOURCE OF FINANCING
The work was supported by the Ministry of Education and Science of the Russian Federation as part of a state assignment to universities in the fi eld of scientifi c activity for 2017-2019. Projects No. 3.6263.2017 / WC and No. 16.8158.2017 / 8.9.

 

 

 

 

REFERENCES 

  1. Zolotukhin I. V., Kalinin Yu. E., Stognay O. V. New directions of physical materials science. Voronezh, Voronezh State University Publ., 2000, 456 p. (in Russ.)
  2. Gridnev S. A., Kalinin Yu. E., Sitnikov A. V., Stognay O.V. Nonlinear phenomena in nano- and microheterogeneous systems. Moscow, BINOM. Lab knowledge Publ., 2012, 352 p. (in Russ.)
  3. Stognay O. V. Electric transport and magnetic properties of amorphous nano-granulated metal-dielectric composites. Doc. Sci. diss, Voronezh, 2004, 280 p.
  4. Diany B., Serious V.S., Metin, Parkin S., Gurney B. A., Baumgart P., Wilhoit D. R. Magnetotransport properties of magnetically soft spin-valve structures. J. Appl. Phys., 1991, v. 69(9), pp. 4774–4779. https://doi.org/10.1063/1.348252
  5. Kalinin Yu. E., Sitnikov A. V., Stognei O. V., Zolotukhin I.V., Neretin P.V. Electrical properties and giant vagnetoresistance of the CoFeB–SiO2 amorphous granular composites. Materials Science and Engineering: A, 2001, v. 304–306, pp. 941–945. https://doi.org/10.1016/s0921-5093(00)01606-3
  6. Kotov L. N., Turkov V. K., Vlasov V. S., Lasek M. P., Kalinin Yu. E., Sitnikov A. V. Conductive, magnetic and structural properties of multilayer fi lms. IOP Conf. Series: Materials Science and Engineering, 2013, v. 47. 012027. https://doi.org/10.1088/1757-899X/47/1/012027
  7. Domashevskaya E. P., Storozhilov S. A., Turishchev S. Yu., Kashkarov V. M., Terekhov V. A., Stogney O. V., Kalinin Yu. E., Sitnikov A. V., Molodtsov S. L. XANES and USXES studies of interatomic interactions in (Co41Fe39B20)x(SiO2)1−x nanocomposites. Physics of the Solid State, 2008, v. 50(1), pp. 139–145. https://doi.org/10.1134/S1063783408010253
  8. Shchekochikhin A. V., Domashevskaya E. P., Karpov S. I. Effect of elemental composition based on CoFeB-SiO2 on magnetic and magnetoresistive properties. Kondensirovannye sredy i mezhfaznye granitsy [Condensed Matter and Interphases], 2006, v. 8(1), pp. 64–66. URL: http://www.kcmf.vsu.ru/resources/t_08_1_2006_013.pdf (in Russ.)
  9. Domashevskaya E. P., Chan Van Tu, Chernyshev A. V., Lukin A. N. Investigation of the interato mic interaction in multilayer nanostructures (Co45Fe45Zr10/a-Si)40 and (Co45Fe45Zr10/SiO2) by method of IR-spectroscopy and small angle diffraction. Condensed Matter and Interphases, 2017, v. 19(2), pp. 195–204. https://doi.org/10.17308/kcmf.2017.19/192 (in Russ.)
  10. JCPDS − International Centrefor Diffraction Data. 2001, no. 51−0740.
  11. JCPDS − International Centre for Diffraction Data. 2001, no. 49−1588.
  12. JCPDS − International Centre for Diffraction Data. 2001, no. 48−1817.
  13. Kongfa Chen, Lihua Fang, Teng Zhang, San Ping Jiang. New zinc andbismuth doped glass sealants with substantially suppressed borondeposition and poisoning for solid oxide fuel cells. J. Mater. Chem. A, 2014, v. 2(43), pp. 18655–18665. https://doi.org/10.1039/c4ta02951h
  14. Wenjie Zhang, Bo Yang, Jinlei Chen. Effects of calcination temperature on preparation of borondoped TiO2  by sol-gel method. International Journal of Photoenergy, 2012, v. 2012, pp. 1–8. https://doi.org/10.1155/2012/528637
  15. Rihcard A., Nyquistand R., Kagel O. Infrared Spectra of Inorganic Compounds. New York and London, Academic Press, 1971, 499 p.
  16. Milovanov Yu. S., Kuznetsov G. V., Skryshevsky V. A., Stupan S. M. Transport of Charge in Nanocomposite Structures of Silicon-SiO2, Silicon-TiO2. Semiconductors, 2014, v. 48(10), pp. 1335–1341. https://doi.org/10.1134/s1063782614100200
  17. Chetverikova A. G., Maryakhina V. S. Studies of polymineral clay containing three-layer aluminosilicates by physical methods. Bulletin of the Orenburg State University, 2015, no. 1 (176), pp. 250–255. (in Russ.)
  18. Shchekochikhin A. V., Domashevskaya E. P., Karpov S. I., Stognei O. V. Interatomic interaction and modes of IR spectra in amorphous nanocomposites (Co45Fe45Zr10)x(SiO2)1–x. Proceedings of Voronezh State University. Series: Physics. Mathematics, 2008, no. 1, pp. 109–114. URL: http://www.vestnik.vsu.ru/pdf/physmath/2008/01/schekochihin.pdf (in Russ.)
  19. María E., Pérez Bernal, Ricardo J., Ruano Casero, Vicente Rives. Mixed Oxides Co-Fe Mixed Oxides & Calorie/Calcination of Layered Double. Ceramics– Silikáty, 2004, v. 48(4), pp. 145–154. URL: https://www.irsm.cas.cz/materialy/cs_content/2004/Bernal_CS_2004_0000.pdf
  20. Nicholas T. Nolan, Michael K. Seery, Suresh C. Pillai. Spectroscopic investigation of the anatase-torutile transformation of sol-gel synthesised TiO2 photocatalysts // J. of Physical Chemistry C, 2009, v. 113, pp. 16151–16157. https://doi.org/10.1021/jp904358g

 

Downloads

Download data is not yet available.

Author Biographies

Evelina P. Domashevskaya, Voronezh State University 1, Universitetskaya pl., 394018 Voronezh, Russian Federation

Dr. Sci. (Phys.- Math.), Full Professor, Head of the Department of Solid State Physics and Nanostructures, Voronezh State University, Voronezh, Russian Federation; email: ftt@phys.vsu.ru. ORCID iD 0000-0002-6354-
4799.

Van Tu Chan, Voronezh State University 1, Universitetskaya pl., 394018 Voronezh, Russian Federation

Master of the Department of Solid State Physics and Nanostructures, Voronezh State University, Voronezh, Russian Federation; e-mail:ftt@phys.vsu.ru

Anatoly N. Lukin, Voronezh State University 1, Universitetskaya pl., 394018 Voronezh, Russian Federation

Cand. Sci. (Phys.-Math.), Associate Professor of the Department of Solid State Physics and Nanostructures, Voronezh State University, Voronezh, Russian Federation; e-mail: ckp_49@mail.ru. ORCID iD 0000-0001-6521-8009.

Sergey V. Sitnikov, Voronezh State Technical University 14, Moskovskii pr., 394026 Voronezh, Russian Federation

Dr. Sci. (Phys. -Math.), Professor of the Department of Solid State Physics, Voronezh State Technical University, Voronezh, Russian Federation; e-mail: sitnikov04@mail.ru. ORCID iD 0000-0002-9438-9234.

Oleg V. Stognay, Voronezh State Technical University 14, Moskovskii pr., 394026 Voronezh, Russian Federation

Dr. Sci. (Phys. -Math.), Professor of the Department of Solid State Physics, Voronezh
State Technical University, Voronezh, Russian Federation; e-mail: sto@sci.vrn.ru. ORCID iD
0000-0002-2464-8376.

Published
2019-09-26
How to Cite
Domashevskaya, E. P., Chan, V. T., Lukin, A. N., Sitnikov, S. V., & Stognay, O. V. (2019). INTERATOMIC INERACTIONS IN AMORPHOUS COMPOSITES (CoFeB)x(TiO2)1–x WITH DIFFERENT CONTENT OF METAL AND DIELECTRIC COMPONENT ACCORDING TO IR SPECTROSCOPY. Condensed Matter and Interphases, 21(3), 374-384. https://doi.org/10.17308/kcmf.2019.21/1151
Section
Статьи