Spontaneous photomagnetoelectric effect in ferromagnetic GaMnAs epitaxial layers

Keywords: GaMnAs, Photomagnetoelectric effect, Molecular beam epitaxy, Ferromagnetic ordering, Curie temperature, Photoconductivity


Spontaneous photomagnetoelectric effect in ferromagnetic GaMnAs epitaxial layers has been investigated. The goal of this work is to study the temperature dependence of the spontaneous PME effect, determined along [110] and [110] crystal axes. GaMnAs layers with Mn concentration of 2.9 atomic percent studied in this paper were grown by low-temperature molecular beam epitaxy on semi-insulating GaAs (001) substrate. It was shown that below Curie temperature in the illuminated GaMnAs epilayers a transverse voltage (photo-EMF) was observed. This photo-EMF is associated with the photomagnetoelectric effect resulting from the separation the photogenerated carriers by the intrinsic magnetic field of the semiconductor matrix
in ferromagnetic state. The temperature dependence of intrinsic photomagnetoelectric effect in GaMnAs epilayer was determined along [110] and [110] crystallographic axes. It was found that the photo-EMF measured along [110] crystal axis exhibits a maximum at temperatures of 35–40 K, while the photo-EMF measured along [110] axis increases monotonically with temperature decay. It was shown that the non-monotonous temperature dependence of the photomagnetoelectric effect along [110] axis can arise due to the reorientation of the easy axis of the sample with decreasing temperature


Download data is not yet available.

Author Biographies

Pavel B. Parchinskiy, National University of Uzbekistan, 4 th University str., Tashkent 100174, Uzbekistan

PhD (Phys.-Math.), Associate
Professor at the Department of Physics of
semiconductors and polymers, National University of
Uzbekistan (Tashkent, Uzbekistan)

Alisa S. Gazizulina, National University of Uzbekistan, 4 th University str., Tashkent 100174, Uzbekistan

Junior Research Fellow at the
Department of Physics of Semiconductors and
Polymers, National University of Uzbekistan (Tashkent,

Rafael A. Nusretov, Uzbek-Japanese Youth Innovation Center, 2-В University str., Tashkent 100095, Uzbekistan

PhD (Phys.-Math.), Research
Fellow at the Uzbek-Japanese Youth Innovation Center
(Tashkent, Uzbekistan)


Ohno H. Making nonmagnetic semiconductors ferromagnetic. Science. 1998;281(5379): 951–956. https://doi.org/10.1126/science.281.5379.951

Pross A., Bending S., Edmonds K., Campion R. P., Foxon C. T., Gallaher B. Magnetic domain imaging of ferromagnetic GaMnAs films. Journal of Applied Physics. 2004;95(11): 7399–7401. https://doi.org/10.1063/1.1669113

Ivanov V. A., Aminov T. G., Novotortsev V. M., Kalinnikov V. T. Spintronics and spintronics materials. Russian Chemical Bulletin, International Edition. 2004;53(11): 2357–2405. https://doi.org/10.1007/s11172-005-0135-5

Men’shov V. K., Tugushev V. V., Caprara S., Chulkov E. V. Proximity-induced spin ordering at the interface between a ferromagnetic metal and a magnetic semiconductor. Physical Review B. 2010;81(23): 235212. https://doi.org/10.1103/PhysRevB.81.235212

Dimitriev G. S., Krainov I. V., Sapega V. F., Averkiev N. S., Debus J., Lähderanta E. Energy structure of an individual Mn acceptor in GaAs:Mn. Physics of the Solid State. 2018;60: 1568–1577. https://doi.org/10.1134/S106378341808005X

Onoda S., Sugimoto N., Nagaosa N. Quantum transport theory of anomalous electric, thermoelectric, and thermal Hall effects in ferromagnets. Physical Review B. 2008;77(16): 165103. https://doi.org/10.1103/PhysRevB.77.165103

Nagaosa N., Sinova J., Onoda S., MacDonald A. H., Ong N. P. Anomalous Hall effect. Reviews of Modern Physics. 2010;82(2): 1539–1592. https://doi.org/10.1103/RevModPhys.82.1539

Hirohata A. , Yamada K. , Nakatani Y. , Prejbeanu I.‑L., Dieny B., Pirro P., Hillebrands B. Review on spintronics: Principles and device applications. Journal of Magnetism and Magnetic Materials. 2020;509: 166711. https://doi.org/10.1016/j.jmmm.2020.166711

Pu Y., Chiba D., Matsukura F., Ohno H., Shi J. Mott relation for Anomalous Hall and Nernst effects in Ga1−xMnxAs ferromagnetic semiconductors. Physical Review Letters. 2008;101(11): 117208. https://doi.org/10.1103/PhysRevLett.101.117208

Chiba D., Nishitani Y., Matsukura F., Ohno H. Properties of Ga1−xMnxAs with high Mn composition (x>0.1). Applied Physics Letters. 2007;90(12): 122503. https://doi.org/10.1063/1.2715095

Chiba D., Werpachowska A., Endo M., Nishitani Y., Matsukura F., Dietl T., Ohno H. Anomalous Hall Effect in Field-Effect Structures of (Ga,Mn)As. Physical Review Letters. 2010;104(10): 106601. https://doi.org/10.1103/PhysRevLett.104.106601

Bonch-Bruyevich V. L., Kalashnikov S. G. Physics of semiconductors*. Moscow: Nauka Publ.; 1990. 688 p. (in Russ.)

Brunner K., Gould C., Schmidt G., Molenkamp L. W. Structure, ferromagnetism and magnetotransport of epitaxial (Ga,Mn)As/GaAs structures. Physica Status Solidi (a). 2006;203(14): 3565–3573. https://doi.org/10.1002/pssa.200622382

Sadowski J., Domagała J. Z., … Ilver L. Structural properties of MBE grown GaMnAs layers. Thin Solid Films. 2000;367(1-2): 165–167. https://doi.org/10.1016/S0040-6090(00)00681-7

Yoon I. T., Kang T. W., Kim D. J. Analysis of magnetic field dependent mobility in ferromagnetic Ga1–xMnxAs layers. Solid State Communications. 2006;137(3): 171–176. https://doi.org/10.1016/j.ssc.2005.10.004

Kojima E., Héroux J. B., … Kuwata-Gonokami M. Experimental investigation of polaron effects in Ga1–xMnxAs by time-resolved and continuous-wave midinfrared spectroscopy. Physical Review. B. 2007;76(19): 195323. https://doi.org/10.1103/PhysRevB.76.195323

Wang K. Y., Edmonds K. W., Campion R. P., Zhao L. X., Foxon C. T., Gallagher B. L. Anisotropic magnetoresistance and magnetic anisotropy in highquality (Ga,Mn)As films. Physical Review. B. 2005;72(8): 085201. https://doi.org/10.1103/PhysRevB.72.085201

Hamaya K., Taniyama T., Kitamoto Y., Moriya R., Munekata H., Magnetotransport study of temperature dependent magnetic anisotropy in a (Ga,Mn)As epilayer. Journal of Applied Physics. 2003; 94 (12): 7657–7661. https://doi.org/10.1063/1.1629134

Lee S., Lee S., Bac S.-K., Choi S., Liu X., Dobrowolska M., Furdyna J. K. Spin–orbit-induced effective magnetic field in GaMnAs ferromagnetic semiconductor. IEEE Transactions on Magnetics. 2019;55(2): 2400206. https://doi.org/10.1109/TMAG.2018.2862867

How to Cite
Parchinskiy, P. B., Gazizulina, A. S., & Nusretov, R. A. (2024). Spontaneous photomagnetoelectric effect in ferromagnetic GaMnAs epitaxial layers. Condensed Matter and Interphases, 26(1), 111-116. https://doi.org/10.17308/kcmf.2024.26/11814
Original articles