Photoluminescent porous silicon nanowires as contrast agents for bioimaging

  • Maria G. Shatskaia Lomonosov Moscow State University, Faculty of Physics, 1 Leninskie Gory, Moscow 119991, Russian Federation
  • Daria A. Nazarovskaia Lomonosov Moscow State University, Faculty of Physics, 1 Leninskie Gory, Moscow 119991, Russian Federation https://orcid.org/0000-0001-8151-9602
  • Kirill A. Gonchar Lomonosov Moscow State University, Faculty of Physics, 1 Leninskie Gory, Moscow 119991, Russian Federation https://orcid.org/0000-0002-2301-2886
  • Yana V. Lomovskaya Lomonosov Moscow State University, Faculty of Physics, 1 Leninskie Gory, Moscow 119991, Russian Federation; Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences, 3 Institutskaya str., Pushchino 142290, Russian Federation
  • Ilia I. Tsiniaikin Lomonosov Moscow State University, Faculty of Physics, 1 Leninskie Gory, Moscow 119991, Russian Federation https://orcid.org/0000-0002-5820-8774
  • Olga A. Shalygina Lomonosov Moscow State University, Faculty of Physics, 1 Leninskie Gory, Moscow 119991, Russian Federation https://orcid.org/0000-0002-0067-318X
  • Andrey A. Kudryavtsev Lomonosov Moscow State University, Faculty of Physics, 1 Leninskie Gory, Moscow 119991, Russian Federation; Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences, 3 Institutskaya str., Pushchino 142290, Russian Federation; Institute for Biological Instrumentation of the Russian Academy of Sciences, 7 Institutskaya str., Pushchino 142290, Russian Federation
  • Liubov A. Osminkina Lomonosov Moscow State University, Faculty of Physics, 1 Leninskie Gory, Moscow 119991, Russian Federation; Institute for Biological Instrumentation of the Russian Academy of Sciences, 7 Institutskaya str., Pushchino 142290, Russian Federation https://orcid.org/0000-0001-7485-0495
Keywords: Porous silicon nanowires, Photoluminescence, Raman spectroscopy, Contrast agents, Bioimaging

Abstract

Porous silicon nanowires (pSi NWs) have attracted considerable interest due to their unique structural, optical properties and biocompatibility. The most common method for their top-down synthesis is metal-assisted chemical etching (MACE) of crystalline silicon (c-Si) wafers using silver nanoparticles as a catalyst. However, the replacement of silver with bioinert gold nanoparticles (Au NPs) markedly improves the efficiency of pSi NWs in biomedical applications. The present study demonstrates the fabrication of porous pSi NWs arrays using Au NPs as the catalyst in MACE of c-Si wafers with a resistivity of 1–5 mOhm·cm. Using scanning electron microscopy (SEM), the formation of arrays of porous nanowires with a diameter of 50 nm that consist of small silicon nanocrystals (nc-Si) and pores was observed. Raman spectroscopy analysis determined the size of nc-Si is about 4 nm. The pSi NWs exhibit effective photoluminescence (PL) with a peak in the red spectrum, which is attributed to the quantum confinement effect occurred in small 4 nm nc-Si. In addition, the pSi NWs exhibit low toxicity towards MCF-7 cancer cells, and their PL characteristics allow them to be used as contrast agents for bioimaging

Downloads

Download data is not yet available.

Author Biographies

Maria G. Shatskaia, Lomonosov Moscow State University, Faculty of Physics, 1 Leninskie Gory, Moscow 119991, Russian Federation

student, Faculty of Physics,
Lomonosov Moscow State University (Moscow, Russian
Federation)

Daria A. Nazarovskaia, Lomonosov Moscow State University, Faculty of Physics, 1 Leninskie Gory, Moscow 119991, Russian Federation

graduate student, Faculty
of Physics, Lomonosov Moscow State University
(Moscow, Russian Federation)

Kirill A. Gonchar, Lomonosov Moscow State University, Faculty of Physics, 1 Leninskie Gory, Moscow 119991, Russian Federation

Cand. Sci. (Phys.–Math.),
Researcher, Faculty of Physics, Lomonosov Moscow
State University (Moscow, Russian Federation)

Yana V. Lomovskaya, Lomonosov Moscow State University, Faculty of Physics, 1 Leninskie Gory, Moscow 119991, Russian Federation; Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences, 3 Institutskaya str., Pushchino 142290, Russian Federation

graduate student, Institute of
Theoretical and Experimental Biophysics Russian
Academy of Sciences (Pushchino, Russian Federation)

Ilia I. Tsiniaikin, Lomonosov Moscow State University, Faculty of Physics, 1 Leninskie Gory, Moscow 119991, Russian Federation

graduate student, Faculty of
Physics Lomonosov Moscow State University (Moscow,
Russian Federation)

Olga A. Shalygina, Lomonosov Moscow State University, Faculty of Physics, 1 Leninskie Gory, Moscow 119991, Russian Federation

Cand. Sci. (Phys.–Math.),
Associate Professor, Faculty of Physics, Lomonosov
Moscow State University (Moscow, Russian Federation)

Andrey A. Kudryavtsev, Lomonosov Moscow State University, Faculty of Physics, 1 Leninskie Gory, Moscow 119991, Russian Federation; Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences, 3 Institutskaya str., Pushchino 142290, Russian Federation; Institute for Biological Instrumentation of the Russian Academy of Sciences, 7 Institutskaya str., Pushchino 142290, Russian Federation

Cand. Sci. (Phys.–Math.),
Leading Researcher, Institute of Theoretical and
Experimental Biophysics Russian Academy of Sciences,
Institute for Biological Instrumentation of the Russian
Academy of Sciences (Pushchino, Russian Federation)

Liubov A. Osminkina, Lomonosov Moscow State University, Faculty of Physics, 1 Leninskie Gory, Moscow 119991, Russian Federation; Institute for Biological Instrumentation of the Russian Academy of Sciences, 7 Institutskaya str., Pushchino 142290, Russian Federation

Cand. Sci. (Phys.–Math.),
Leading Researcher, Faculty of Physics, Moscow
Lomonosov Moscow State University (Moscow, Russian
Federation), Institute for Biological Instrumentation
of the Russian Academy of Sciences (Pushchino,
Russian Federation)

References

Canham L. (Ed.). Handbook of porous silicon. Berlin, Germany: Springer International Publishing; 2018. https://doi.org/10.1007/978-3-319-71381-6

Canham L. T. Nanoscale semiconducting silicon as a nutritional food additive. Nanotechnology. 2007;18: 185704. https://dx.doi.org/10.1088/0957-4484/18/18/185704

Low S. P., Voelcker N. H., Canham L. T., Williams K. A. The biocompatibility of porous silicon in tissues of the eye. Biomaterials. 2009;30: 2873–2880. https://doi.org/10.1016/j.biomaterials.2009.02.008

Gongalsky M. B., Tsurikova U. A., Gonchar K. A., Gvindgiliiia G. Z., Osminkina L. A. Quantumconfinement effect in silicon nanocrystals during their dissolution in model biological fluids. Semiconductors. 2021;55(1): 61–65. https://doi.org/10.1134/s1063782621010097

Maximchik P. V., Tamarov K., Sheval E. V., … Osminkina L. A. Biodegradable porous silicon nanocontainers as an effective drug carrier for regulation of the tumor cell death pathways. ACS Biomaterials Science & Engineering. 2019;5(11): 6063–6071. https://doi.org/10.1021/acsbiomaterials.9b01292

Delerue C., Allan G., Lannoo M. Theoretical aspects of the luminescence of porous silicon. Physical Review B. 1993;48: 11024. https://doi.org/10.1103/PhysRevB.48.11024

Ledoux G., Guillois O., Porterat D., … Pillard V. Photoluminescence properties of silicon nanocrystals as a function of their size. Physical Review B. 2000;62: 15942. https://doi.org/10.1103/PhysRevB.62.15942

Park J. H., Gu L., von Maltzahn G., Ruoslahti E., Bhatia S. N., Sailor M. J. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nature Materials. 2009;8: 331–336. https://doi.org/10.1038/nmat2398

Tolstik E., Gongalsky M. B., Dierks J., … Lorenz K. Raman and fluorescence microspectroscopy applied for the monitoring of sunitinib-loaded porous silicon nanocontainers in cardiac cells. Frontiers in Pharmacology. 2022;13: 962763. https://doi.org/10.3389/fphar.2022.962763

Gu L., Hall D. J., Qin Z., … Sailor M. J. In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles. Nature Communications. 2003;4: 2326. https://doi.org/10.1038/ncomms3326

Salonen J., Lehto V. P. Fabrication and chemical surface modification of mesoporous silicon for biomedical applications. Chemical Engineering Journal. 2008,137: 162–172. https://doi.org/10.1016/j.cej.2007.09.001

Gongalsky M. B., Kharin A. Y., Osminkina L. A., … Chung B. H. Enhanced photoluminescence of porous silicon nanoparticles coated by bioresorbable polymers. Nanoscale Research Letters. 2012;7: 1–7. https://doi.org/10.1186/1556-276X-7-446

Canham L.T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Applied Physics Letters. 1990;57: 1046–1048. https://doi.org/10.1063/1.103561

Lehmann V., Stengl R., Luigart A. On the morphology and the electrochemical formation mechanism of mesoporous silicon. Materials Science and Engineering: B. 2000;69: 11–22. https://doi.org/10.1016/S0921-5107(99)00286-X

Gongalsky M. B., Kargina J. V., Cruz J. F., … Sailor M. J. Formation of Si/SiO2 Luminescent quantum dots from mesoporous silicon by sodium tetraborate/citric acid oxidation treatment. Frontiers in Chemistry. 2019;7: 165. https://doi.org/10.3389/fchem.2019.00165

Titova S. S., Osminkina L. A., Kakuliia … Turishchev S. Y. X-ray photoelectron spectroscopy of hybrid 3T3 NIH cell structures with internalized porous silicon nanoparticles on substrates of various materials. Condensed Matter and Interphases. 2023;25(1): 132-138. https://doi.org/10.17308/kcmf.2023.25/10983

Peng K. Q., Hu J. J., Yan Y. J., … Zhu J. Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Advanced Functional Materials. 2006;16(3): 387–394. https://doi.org/10.1002/adfm.200500392

Chiappini C., Liu X., Fakhoury J. R., Ferrari M. Biodegradable porous silicon barcode nanowires with defined geometry. Advanced Functional Materials. 2010;20(14): 2231–2239. https://doi.org/10.1002/adfm.201000360

Turishchev S. Yu., Terekhov V. A, Nesterov D. N. … Domashevskaya E. P. Electronic structure of silicon nanowires formed by MAWCE method. Condensed Matter and Interphases. . 2016;18(1): 130–141.

Available at: http://https://journals.vsu.ru/kcmf/article/view/117

Gonchar K. A., Zubairova A. A., Schleusener A., Osminkina L. A., Sivakov V. Optical properties of silicon nanowires fabricated by environment-friendly chemistry. Nanoscale Research Letters. 2016;11: 1–5. https://doi.org/10.1186/s11671-016-1568-5

Tolstik E., Osminkina L. A., Akimov D., … Popp J. Linear and non-linear optical imaging of cancer cells with silicon nanoparticles. International Journal of Molecular Sciences. 2016;17(9): 1536. https://doi.org/10.3390/ijms17091536

Osminkina L. A., Sivakov V. A., Mysov G. A., … Timoshenko V. Yu. Nanoparticles prepared from porous silicon nanowires for bio-imaging and sonodynamic therapy. Nanoscale Research Letters. 2014; 9: 463. https://doi.org/10.1186/1556-276X-9-463

Osminkina L. A., Žukovskaja O., Agafilushkina S. N., … Sivakov V. Gold nanoflowers grown in a porous Si/SiO2 matrix: The fabrication process and plasmonic properties. Applied Surface Science. 2020;507: 144989. https://doi.org/10.1016/j.apsusc.2019.144989

Akan R., Parfeniukas K., Vogt C., Toprak M. S.,Vogt, U. Reaction control of metal-assisted chemical etching for silicon-based zone plate nanostructures. RSC Advances. 2018;8(23): 12628–12634. https://doi.org/10.1039/C8RA01627E

Zi J., Zhang K., Xie X. Comparison of models for Raman spectra of Si nanocrystals. Physical Review B. 1997;55(15): 9263. https://doi.org/10.1103/PhysRevB.55.9263

Published
2024-01-31
How to Cite
Shatskaia, M. G., Nazarovskaia, D. A., Gonchar, K. A., Lomovskaya, Y. V., Tsiniaikin, I. I., Shalygina, O. A., Kudryavtsev, A. A., & Osminkina, L. A. (2024). Photoluminescent porous silicon nanowires as contrast agents for bioimaging. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 26(1), 161-167. https://doi.org/10.17308/kcmf.2024.26/11819
Section
Original articles