Photoluminescent porous silicon nanowires as contrast agents for bioimaging
Abstract
Porous silicon nanowires (pSi NWs) have attracted considerable interest due to their unique structural, optical properties and biocompatibility. The most common method for their top-down synthesis is metal-assisted chemical etching (MACE) of crystalline silicon (c-Si) wafers using silver nanoparticles as a catalyst. However, the replacement of silver with bioinert gold nanoparticles (Au NPs) markedly improves the efficiency of pSi NWs in biomedical applications. The present study demonstrates the fabrication of porous pSi NWs arrays using Au NPs as the catalyst in MACE of c-Si wafers with a resistivity of 1–5 mOhm·cm. Using scanning electron microscopy (SEM), the formation of arrays of porous nanowires with a diameter of 50 nm that consist of small silicon nanocrystals (nc-Si) and pores was observed. Raman spectroscopy analysis determined the size of nc-Si is about 4 nm. The pSi NWs exhibit effective photoluminescence (PL) with a peak in the red spectrum, which is attributed to the quantum confinement effect occurred in small 4 nm nc-Si. In addition, the pSi NWs exhibit low toxicity towards MCF-7 cancer cells, and their PL characteristics allow them to be used as contrast agents for bioimaging
Downloads
References
Canham L. (Ed.). Handbook of porous silicon. Berlin, Germany: Springer International Publishing; 2018. https://doi.org/10.1007/978-3-319-71381-6
Canham L. T. Nanoscale semiconducting silicon as a nutritional food additive. Nanotechnology. 2007;18: 185704. https://dx.doi.org/10.1088/0957-4484/18/18/185704
Low S. P., Voelcker N. H., Canham L. T., Williams K. A. The biocompatibility of porous silicon in tissues of the eye. Biomaterials. 2009;30: 2873–2880. https://doi.org/10.1016/j.biomaterials.2009.02.008
Gongalsky M. B., Tsurikova U. A., Gonchar K. A., Gvindgiliiia G. Z., Osminkina L. A. Quantumconfinement effect in silicon nanocrystals during their dissolution in model biological fluids. Semiconductors. 2021;55(1): 61–65. https://doi.org/10.1134/s1063782621010097
Maximchik P. V., Tamarov K., Sheval E. V., … Osminkina L. A. Biodegradable porous silicon nanocontainers as an effective drug carrier for regulation of the tumor cell death pathways. ACS Biomaterials Science & Engineering. 2019;5(11): 6063–6071. https://doi.org/10.1021/acsbiomaterials.9b01292
Delerue C., Allan G., Lannoo M. Theoretical aspects of the luminescence of porous silicon. Physical Review B. 1993;48: 11024. https://doi.org/10.1103/PhysRevB.48.11024
Ledoux G., Guillois O., Porterat D., … Pillard V. Photoluminescence properties of silicon nanocrystals as a function of their size. Physical Review B. 2000;62: 15942. https://doi.org/10.1103/PhysRevB.62.15942
Park J. H., Gu L., von Maltzahn G., Ruoslahti E., Bhatia S. N., Sailor M. J. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nature Materials. 2009;8: 331–336. https://doi.org/10.1038/nmat2398
Tolstik E., Gongalsky M. B., Dierks J., … Lorenz K. Raman and fluorescence microspectroscopy applied for the monitoring of sunitinib-loaded porous silicon nanocontainers in cardiac cells. Frontiers in Pharmacology. 2022;13: 962763. https://doi.org/10.3389/fphar.2022.962763
Gu L., Hall D. J., Qin Z., … Sailor M. J. In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles. Nature Communications. 2003;4: 2326. https://doi.org/10.1038/ncomms3326
Salonen J., Lehto V. P. Fabrication and chemical surface modification of mesoporous silicon for biomedical applications. Chemical Engineering Journal. 2008,137: 162–172. https://doi.org/10.1016/j.cej.2007.09.001
Gongalsky M. B., Kharin A. Y., Osminkina L. A., … Chung B. H. Enhanced photoluminescence of porous silicon nanoparticles coated by bioresorbable polymers. Nanoscale Research Letters. 2012;7: 1–7. https://doi.org/10.1186/1556-276X-7-446
Canham L.T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Applied Physics Letters. 1990;57: 1046–1048. https://doi.org/10.1063/1.103561
Lehmann V., Stengl R., Luigart A. On the morphology and the electrochemical formation mechanism of mesoporous silicon. Materials Science and Engineering: B. 2000;69: 11–22. https://doi.org/10.1016/S0921-5107(99)00286-X
Gongalsky M. B., Kargina J. V., Cruz J. F., … Sailor M. J. Formation of Si/SiO2 Luminescent quantum dots from mesoporous silicon by sodium tetraborate/citric acid oxidation treatment. Frontiers in Chemistry. 2019;7: 165. https://doi.org/10.3389/fchem.2019.00165
Titova S. S., Osminkina L. A., Kakuliia … Turishchev S. Y. X-ray photoelectron spectroscopy of hybrid 3T3 NIH cell structures with internalized porous silicon nanoparticles on substrates of various materials. Condensed Matter and Interphases. 2023;25(1): 132-138. https://doi.org/10.17308/kcmf.2023.25/10983
Peng K. Q., Hu J. J., Yan Y. J., … Zhu J. Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Advanced Functional Materials. 2006;16(3): 387–394. https://doi.org/10.1002/adfm.200500392
Chiappini C., Liu X., Fakhoury J. R., Ferrari M. Biodegradable porous silicon barcode nanowires with defined geometry. Advanced Functional Materials. 2010;20(14): 2231–2239. https://doi.org/10.1002/adfm.201000360
Turishchev S. Yu., Terekhov V. A, Nesterov D. N. … Domashevskaya E. P. Electronic structure of silicon nanowires formed by MAWCE method. Condensed Matter and Interphases. . 2016;18(1): 130–141.
Available at: http://https://journals.vsu.ru/kcmf/article/view/117
Gonchar K. A., Zubairova A. A., Schleusener A., Osminkina L. A., Sivakov V. Optical properties of silicon nanowires fabricated by environment-friendly chemistry. Nanoscale Research Letters. 2016;11: 1–5. https://doi.org/10.1186/s11671-016-1568-5
Tolstik E., Osminkina L. A., Akimov D., … Popp J. Linear and non-linear optical imaging of cancer cells with silicon nanoparticles. International Journal of Molecular Sciences. 2016;17(9): 1536. https://doi.org/10.3390/ijms17091536
Osminkina L. A., Sivakov V. A., Mysov G. A., … Timoshenko V. Yu. Nanoparticles prepared from porous silicon nanowires for bio-imaging and sonodynamic therapy. Nanoscale Research Letters. 2014; 9: 463. https://doi.org/10.1186/1556-276X-9-463
Osminkina L. A., Žukovskaja O., Agafilushkina S. N., … Sivakov V. Gold nanoflowers grown in a porous Si/SiO2 matrix: The fabrication process and plasmonic properties. Applied Surface Science. 2020;507: 144989. https://doi.org/10.1016/j.apsusc.2019.144989
Akan R., Parfeniukas K., Vogt C., Toprak M. S.,Vogt, U. Reaction control of metal-assisted chemical etching for silicon-based zone plate nanostructures. RSC Advances. 2018;8(23): 12628–12634. https://doi.org/10.1039/C8RA01627E
Zi J., Zhang K., Xie X. Comparison of models for Raman spectra of Si nanocrystals. Physical Review B. 1997;55(15): 9263. https://doi.org/10.1103/PhysRevB.55.9263
Copyright (c) 2024 Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.