Features of synthesis and properties of new materials based on monoisotopic silicon and germanium. Review
Abstract
This paper reviews scientific works on the preparation and properties of isotopically enriched silicon and germanium, along with their compounds. It covers the technological aspects and peculiarities of synthetic methods with the deep purification processes for obtaining isotopically enriched silicon and germanium compounds. The review also discusses the production of polycrystalline and single-crystal samples with varying degrees of isotopic and chemical purity. The results of a study investigating the physicochemical characteristics of both simple and complex substances derived from isotopically enriched silicon and germanium are presented. These studies indicate that the isotopic composition of silicon and germanium
significantly affects heat capacity, thermal conductivity, and light absorption processes. Finally, the paper explores current applications of substances and materials based on isotopically enriched silicon and germanium
Downloads
References
Devyatykh G. G., Bulanov A. D., Gusev A. V… Pohl H.‑J. Doklady Chemistry.2001;376(4/6), 47–48. https://doi.org/10.1023/a:1018864208808
High-purity substances*. M. F. Churbanov, Yu. A. Karpov, P. V. Zlomanov, V. A. Fedorov (eds.). Moscow: Nauchnyj Mir Publ., 2018. 996 p. (In Russ.)
Isotopes: properties, production, application*. In 2 volumes. Vol. 1. V. Yu. Baranov (ed.). Moscow: Fizmatlit Publ., 2005. 600 p. (In Russ.)
Plekhanov V. G. Isotope engineering. Physics-Uspekhi. 2000:170(11): 1245–1252. https://doi.org/10.1070/pu2000v043n11abeh000264
Itoh K. M., Kato J., Uemura M., … Rieman H. High purity isotopically enriched 29Si and 30Si single crystals: isotope separation, purification, and growth. Japanese Journal of Applied Physics. 2003;42: 6248–6251. https://doi.org/10.1143/JJAP.42.6248
Devyatykh G. G., Bulanov A. D., Gusev A. V., … Abrosimov N. V. High-purity single-crystal monoisotopic silicon-28 for precise determination of Avogadro’s number. Doklady Chemistry. 2008(421): 157–160. https://doi.org/10.1134/S001250080807001X
Abrosimov N. V., Aref’ev D. G., Becker P., … Zakel S. A new generation of 99.999 % enriched 28Si single crystals for the determination of Avogadro constant. Metrologia. 2017;54: 599–609. https://doi.org/10.1088/1681-7575/aa7a62
Arefiev D. G., Bulanov A. D., Vasin S. A., ... Churbanov M. F. Method for separating germanium isotopes*: RF Patent: No. 2412747. Publ. 02.27.2011, bull. No. 6. (In Russ.)
Churbanov M. F., Gavva V. A., Bulanov A. D., … Gusev A. V. Production of germanium stable isotopes single crystals. Crystal Research and Technology. 2017;52(4): 1700026. https://doi.org/10.1002/crat.201700026
Seyfried P., Spieweck F., Bettin H., …, Holm C. Тhe silicon-28 path to the Avogadro constant – first experiments and outlook. Proceedings of Conference on Precision Electromagnetic Measurements Digest. 1995;44(2): 522–525. https://doi.org/10.1109/CPEM.1994.333372
Takyu K., Itoh K. M., Oka K., Saito N., Ozhogin V. I. Growth and characterization of the isotopically enriched 28Si bulk single crystal. Japanese Journal of Applied Physics.1999;38: L1493–L1495. https://doi.org/10.1143/jjap.38.l1493
Capinski W. S., Maris H. J., Bauser E., Silier … Gmelin E. Thermal conductivity of isotopically enriched Si. Applied
Physics Letters. 1997;71(15): 2109–2111. https://doi.org/10.1063/1.119384
Kremer R. K., Graf K., Cardona M., Gusev A. V., Inyushkin A. V., Taldenkov A. Thermal conductivity of isotopically enriched 28Si: revisited. Solid State Communications. 2004;131: 499–503. https://doi.org/10.1016/j.ssc.2004.06.022
Gusev A. V., Gavva V. A., Kozyrev E. A., Potapov A. M., Plotnichenko V. G. Preparation of single-crystal 29Si. Inorganic Materials. 2011;47(7): 691–693. https://doi.org/10.1134/s0020168511070119
Nakabayashi Y., Segawa T., Osman H. I., … Abe T. Epitaxial growth of pure 30Si layers on a natural Si(100) substrate using enriched 30SiH4. Japanese Journal of Applied Physics. 2000;39(11B): L1133–L1134. https://doi.org/10.1143/JJAP.39.L1133
Inyushkin A. V., Taldenkov A. N., Gusev A. V., Gibin A. M., Gavva V. A., Kozyrev E. A. Thermal conductivity of the single-crystal monoisotopic 29Si in the temperature range 2.4–410 K. Physics of the Solid State; 2013;55(1): 235–239. https://doi.org/10.1134/s1063783413010150
Becker Р., Schiel D., Pohl H.-J., … Dianov E. M. Largescale production of highly enriched 28Si for the precise determination of the Avogadro constant. Measurement Science and Technology. 2006;17: 1854–1860. https://doi.org/10.1088/0957-0233/17/7/025
Andreas B., Azuma Y., Bartl G., … Zakel S. Counting the atoms in a 28Si crystal for a new kilogram definition. Metrologia. 2011;48: S1–S13. https://doi.org/10.1088/0026-1394/48/2/S01
Chuprov L. A., Sennikov P. G., Tokhadze K. G., Ignatov S. K., Schrems O. High-resolution Fourier-transform IR spectroscopic determination of impurities in silicon tetrafluoride and silane prepared from it. Inorganic Materials. 2006; 42(8): 924–931. https://doi.org/10.1134/s0020168506080231
Krylov V. A., Sorochkina T. G. Gas-chromatographic determination of C1-C4 hydrocarbon trace impurities in silicon tetrafluoride. Journal of Analytical Chemistry. 2005;60(12): 1125–1128. https://doi.org/10.1007/s10809-005-0254-z
Bulanov A. D., Sennikov P. G., Krylov V. A., … Troshin O. Yu. (2007). Hydrocarbon impurities in SiF4 and SiH4 prepared from it. Inorganic Materials. 2007;43(4): 364–368. https://doi.org/10.1134/s0020168507040061
Pimenov V. G., Bulanov A. D. Analysis of high-purity silicon tetrafluoride by atomic-emission method with concentration of impurities by matrix sublimation. Analitika i kontrol’. 2004; 8(4): 315–321. (In Russ.). Available at: https://elar.urfu.ru/bitstream/10995/57605/1/aik-2004-04-02.pdf
Bulanov A. D., Pimenov V. G. Determination of impurities in monoisotopic silicon tetrafluoride. Inorganic Materials. 2004; 40(7): 754–759. https://doi.org/10.1023/b:inma.0000034777.13686.f8
Kovalev I. D., Potapov A. M.,Bulanov A. D. Measurement of the isotopic composition of the isotopic enriched silicon and its volatile compounds by laser ionization mass spectrometry. Mass-spektrometria. 2004; 1(1): 37–44. (In Russ., abstract in Eng.). Available at: https://elibrary.ru/item.asp?id=9290214
Bulanov A. D., Troshin O. Yu., Balabanov V. V. Synthesis of high-purity calcium hydride. Russian Journal of Applied Chemistry. 2004;77(6): 875–877. https://doi.org/10.1023/b:rjac.0000044107.80122.61
Bulanov A. D., Balabanov V. V., Pryakhin D. A., Troshin O. Yu. Preparation and fine purification of SiF4 and 28SiH4. Inorganic Materials. 2002;38(3): 283–287. https://doi.org/10.1023/A:1014735203351
Arefiev D. G., Bulanov A. D., Vasin S. A., ... Churbanov M. F. Method for separating germanium isotopes*: Patent RF No. 2412747. Publ. 02.27.2011, bull. No. 6.
Troshin O. Yu., Bulanov A. D., Mikheev V. S., Lashkov A. Yu. Mechanically activated synthesis of monosilane by the reaction of calcium hydride with silicon tetrafluoride. Russian Journal of Applied Chemistry. 2010;83(6): 984–988. https://doi.org/10.1134/S1070427210060108
Bulanov A. D., Sennikov P. G., Sozin A. Yu., Lashkov A. Yu., Troshin O. Yu. Formation of impurity Si2OH6 in silane syntezed from silicon tetrafluoride. Russian Journal of Inorganic Chemistry. 2011;56(4): 510–512. https://doi.org/10.1134/S0036023611040061
Bulanov A. D., Moiseev A. N., Troshin O. Yu., Balabanov V. V., Isaev D. V. Fine purification of monoisotopic silanes 28SiH4, 29SiH4 and 30SiH4 via distillation. Inorganic Materials. 2004; 40(6): 555–557. https://doi.org/10.1023/b:inma.0000031984.83652.87
Gusev A. V., Bulanov A. D. High-purity silicon isotopes 28Si, 29Si and 30SiН4. Inorganic Materials. 2008;44(13): 1395–1408. https://doi.org/10.1134/S0020168508130013
Gusev A. V., Gavva V. A., Kozyrev E. A., Riemann H., Abrosimov N. V. Crucibles for Czochralski growth of isotopically enriched silicon single crystals. Inorganic Materials. 2013;49(12): 1167–1169. https://doi.org/10.1134/s0020168513120078
Andreas B., Azuma Y., Bartl G., … Waseda A. An accurate determination of the Avogadro constant by counting the atoms in a 28Si crystal. Physical Review Letters. 2011;106(3): 030801(1-4). https://doi.org/10.1103/PhysRevLett.106.030801
. Gibin A. M., Devyatykh G. G., Gusev A. V., Kremer R. K., Cardona M., Pohl H.-J. Heat capacity of isotopically enriched 28Si, 29Si and 30Si in the temperature range 4 K https://doi.org/10.1016/j.ssc.2004.12.047
Plotnichenko V. G., Nazaryants V. O., Kryukova E. V., … Dianov E. M. Refractive index spectral dependence, amanspectra, and transmission spectra of high-purity 28Si, 29Si, 30Si, and Sinat single crystals. Applied Optics. 2011;50(23): 4633–4641. https://doi.org/10.1364/AO.50.004633
Ramdas A. K., Rodriguez S.,Tsoi S., Haller E. E. Electronic band gaps of semiconductors as influenced by theirisotopic composition. Solid State Communications. 2005;133(11): 709–714. https://doi.org/10.1016/j.ssc.2004.12.038
Sanati M., Estreicher S. K., Cordona M. Isotopic dependence of the heat capacity of c-C, Si, and Ge:An abinitio calculation. Solid State Communications. 2004;131: 229–233. https://doi.org/10.1016/j.ssc.2004.04.043
Cardona M., Ruf T. Phonon self-energies in semiconductors: Anharmonic and isotopic contributions. Solid State Communications. 2001;117: 201–212. https://doi.org/10.1016/S0038-1098(00)00443-9
Wille H.-C., Shvyd’ko Yu. V., Gerdau E., … Zegenhagen J. Anomalous isotopic effect on the lattice parameter of silicon. Physical Review Letters. 2002;89: 285901. https://doi.org/10.1103/PhysRevLett.89.285901
Cardona M., Thewalt M. L. W. Isotope effects on the optical spectra of semiconductors. Reviews of Modern Physics. 2005; 77: 1173–1223. https://doi.org/10.1103/RevModPhys.77.1173
Haller E. E. Isotopically controlled semiconductors. Solid State Communications. 2005;133(11): 693–707. https://doi.org/10.1016/j.ssc.2004.12.021
Gavva V. A., Troshin O. Yu., Adamchik S. A., … Bulanov A. D. Preparation of single-crystal isotopically enriched 70Ge by a hydride method. Inorganic Materials. 2022; 58(3): 246–251. https://doi.org/10.1134/s0020168522030050
Sozin A. Yu., Krylov V. A., Chernova O. Yu., … Lashkov A. Yu. Study of the impurity composition of isotope enrichedgerman 70G e H 4 by the method of gas chromatography-mass spectrometry. Perspektivnye Materialy. 2022;2: 70–82. https://doi.org/10.30791/1028-978x-2022-2-70-82
Potapov A. M., Kurganova A. E., Bulanov A. D., Troshin O. Yu., Zyryanov S. M. Isotope analysis of 72GeH4, 73GeH4, 74GeH4, and 76GeH4 monogermanes by inductivelycoupled plasma high-resolution mass spectrometry (ICP–MS). Journal of Analytical Chemistry. 2016;71(7): 667–675. https://doi.org/10.1134/s1061934816050087
Churbanov M. F., Gavva V. A., Bulanov A. D., … Abrosimov N. V. Production of germanium stable isotopes single crystals. Crystal Research and Technology. 2017;52(4): 1700026. https://doi.org/10.1002/crat.201700026
Gavva V. A., Bulanov A. D., Kut’in A. M., Plekhovich A. D., Churbanov M. F. Melting point of high-purity germanium stable isotopes. Physica B: Condensed Matter. 2018; 537: 12–14. https://doi.org/10.1016/j.physb.2018.01.056
Kutyin A. M., Plekhovich A. D., Gavva V. A., Bulanov A. D. Development of an applied version of the Kolmogorov–Johnson–Meyl crystallization theory for processing thermal analysis data on the melting emperature and enthalpy of germanium isotopes. Doklady Rossijskoj Akademii Nauk. Himiya, Nauki o Materialah. 2024;516(1):30-38. https://doi.org/10.31857/S2686953524030046
Gibin A. M., Abrosimov N. V., Bulanov A. D., Gavva V. A.Thermal conductivity of single-crystals isotopically enriched 70Gе, 72Gе, 74Gе in the temperature range of 80-310 K. Physics of the Solid State. 2023;65(8): 1393–1396. https://doi.org/10.21883/FTT.2023.08.56167.65
Kropotov G. I., Kaplunov I. A., Rogalin V. E., Shakhmin A. A., Bulanov A. D. Particular of radiation transmission of monoisotopic germanium single crystals in the terahertz spectral range. Applied Physics (Prikladnaya Fizika). 2024(1): 80–83. https://doi.org/10.51368/1996-0948-2024-1-80-84
Lipskiy V. A., Kotereva T. V., Bulanov A. D., Gavva V. A., Churbanov M. F., Nazaryants V. O., Koltashev V. V., Plotnichenko V. G. Refractive index spectral dependence, Raman spectra, and transmission spectra of high-purity 2Ge, 73Ge, 74Ge, 76Ge, and natGe single crystals. Applied Optics. 2019;58(27): С. 7489–7496. https://doi.org/10.1364/AO.58.007489
Kropotov G. I., Bulanov A. D., Rogalin V. E., Kaplunov I. A., Shakhmin A. A. (2023). Dependence of the position of phonon IR absorption bands of germanium isotopes on their mass number. Doklady Rossijskoj Akademii Nauk. Fizika, Tekhnicheskie Nauki.2023;511(1), 10–15. (In Russ., abstract in Eng.). https://doi.org/10.31857/s2686740023040077
Kaplunov I. A., Rogalin V. E., Filin S. A., Kropotov G. I., Shakhmin A. A., Bulanov A. D. Method of express nalysis of objective identification of isotopically pure germanium single crystal*. Patent RF: No. 2813061. Publ. 06.02.2024. (In Russ.)
Velmuzhova I. A., Koshelev M. A., Velmuzhov A. P., Ulenikov O. N., Gromova O. V. Thermodynamic functions of germane isotopologues AGeH4 (A = 70, 72, 73, 74, 76) calculated from high-resolution IR spectra. Journal of Molecular Spectroscopy. 2024;402: 111914. https://doi.org/10.1016/j.jms.2024.111914
Fedorov A. K. Quantum technologies: from scientific discoveries to new applications. PHOTONICS Russia. 2019;13(6): 574–583. (In Russ., abstract in Eng.). https://doi.org/10.22184/1993-7296.FRos.2019.13.6.574.583
Fedorov A. K., Akimov A. V., Biamonte J. D., … Zheltikov A. M. Quantum technologies in Russia. Quantum Science and Technology. 2019;4: 40501. https://doi.org/10.1088/2058-9565/ab4472
Valiev K. A. Quantum computers and quantum computations. Uspekhi Fizicheskih Nauk. 2005;175(1):, 3. https://doi.org/10.3367/ufnr.0175.200501a.0003
Vrijen R., Di Vincenzo D. Electron spin resonance transistor for quantum computation in silicon-germanium heterostructure. Physical Review A. 2000;62: 012306(1–10). https://doi.org/10.1103/PhysRevA.62.012306
Troshin O. Yu., Gavva V. A., Lashkov A. Yu., … Bulanov A. D. Isotopically modified silicon, germanium and their hydrides for the development of quantum computing devices*. Neorganičeskie materialy. 2023;59(11): 1201–1210. https://doi.org/10.31857/S0002337X23110143
Heitmann W., Klein K. F. Glass for optical waveguides or the like. US Patent: No. 6490399. Published 3.12.2002.
Kelsey V., Alexander J.E., Burden S.J. Isotopically engeneered optical materials. US Patent: No. 20030039865. Publ. 27.02.2003.
Churbanov M. F., Bulanov A. D., Troshin O. Yu., Grebenkov K. S. Method for producing isotopically enriched silicon tetrachloride*. R F Patent: No. 2618265. Publ. 03.05.2017, bull. No. 13.
Troshin O. Yu., Bulanov A. D., Kirillov Yu. P., … Ermakov A. A. Preparation of high-purity silicon-28 tetrachloride from silicon-28 tetrafluoride. Inorganic Materials. 2022;58(8): 854–859. https://doi.org/10.1134/s002016852208012x
Troshin O. Yu., Bulanov A. D., Chernova O. Yu. Liquid–vapor equilibria in the SiCl4–A (A = SiCl4–nFn (n = 1–4) impurity) systems. Inorganic Materials. 2018;54(8): 840–843. https://doi.org/10.1134/s0020168518080162
Troshin O. Yu., Bulanov A. D., Salgansky M. Yu., … Drozdov M. N. 28SiO2-based isotopically enriched silica fiber. Inorganic Materials. 2023;59(6): 591-596. https://doi.org/10.1134/s0020168523060158
Copyright (c) 2024 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases

This work is licensed under a Creative Commons Attribution 4.0 International License.