The potential corrosion inhibition properties of acetyl benzoic acid derivatives with substituted alkali metals (Na, K, Li): DFT approach
Abstract
Purpose: Inhibitors of corrosion shield metals from corroding. Such chemicals may be added to a corrosive environment to either halt or slow down metal corrosion. The molecular structure of 3-acetyl benzoic acid (3ABA) C9H8O3 consists of planar molecules. These molecules aggregate by centrosymmetric hydrogen-bond pairing of ordered carboxyl groups. The novelty of the research and its primary objective was to perform a theoretical computational study on derivatives of 3ABA-M (Metal), where M molecule is modified by adding lithium (Li), sodium (Na), and potassium (K).
Experimental part: The study was carried out withing the framework of the density functional theory (DFT) at the B3LYP/6-31G+ (d) level in the Gaussian 09W software. It involved geometrical optimization, analyzing spectral properties, electronic transitions, and the energy gap between the Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied MolecularOrbital (LUMO). The calculated properties included EHOMO, ELUMO, energy band gap (Egap), ionization energy (IE), electron affinity (EA), absolute electronegativity (χ), global hardness (h), and global softness (S).
Conclusions: The chemical reactivity of the studied molecule was investigated by analyzing its molecular electrostatic potential (MEP) and electron localization function (ELF), using the Multiwfn 3.7 software. Consequently, it was concluded that the large energy gap of 3BAB (5.617 eV) and its high hardness (2.809) correlate with a low refractive index, dielectric constant, and low corrosion inhibition, whereas significant molecular softness of 3ABA-Na (2.88 eV-1) is associated with a high refractive index
Downloads
References
Verma C., Ebenso E. E, Quraishi M., Hussain C. M. Recent developments in sustainable corrosion inhibitors: design, performance and industrial scale applications. Materials Advances. 2021;2(12): 3806–3850. https://doi.org/10.1039/D0MA00681E
Aslam R., Serdaroglu G., Zehra S., … Quraishi M. Corrosion inhibition of steel using different families of organic compounds: Past and present progress. Journal of Molecular Liquids. 2022;348: 118373. https://doi.org/10.1016/j.molliq.2021.118373
Verma C., Chauhan D. S., Aslam R., …Dubey S. Principles and theories of green chemistry for corrosion science and engineering: design and application. Green Chemistry. 2024;26(8): 4270–4357. https://doi.org/10.1039/D3GC05207A
Mazumder M. J. Global impact of corrosion: occurrence, cost and mitigation. Glob Journal Engineer Science. 2020;5(4): 1–5. https://doi.org/10.33552/GJES.2020.05.000618
Pittman C. U., Stahl G. A. Copolymerization of pentachlorophenyl acrylate with vinyl acetate and ethyl acrylate. Polymer-bound fungicides. Journal of Applied Polymer Science. 1981;26(7): 2403–2413. https://doi.org/10.1002/app.1981.070260726
Apostol T.-V., Chifiriuc M. C., Draghici C., … Barbuceanu S.-F. Synthesis, in silico and in vitro evaluation of antimicrobial and toxicity feat ures of new 4-[(4-chlorophenyl) sulfonyl] benzoic acid derivatives. Molecules. 2021;26(16): 5107. https://doi.org/10.3390/molecules26165107
Park E.-S., Moon W.-S., Song M.-J., Kim M.-N., Chung K.-H., Yoon J.-S. Antimicrobial activity of phenol and benzoic cid derivatives. International Biodeterioration & Biodegradation. 2001;47(4): 209–214. https://doi.org/10.1016/S0964-8305(01)00058-0
Parc H. W., Park E. H., Yun H. M., Rhim H. Sodium benzoate-mediated cytotoxicity in mammalian cells. Journal of Food Biochemistry. 2011;35(4): 1034–1046. https://doi.org/10.1111/j.1745-4514.2010.00432.x
Thirumurugan P., Matosiuk D., Jozwiak K. Click chemistry for drug development and diverse chemical–biology applications. Chemical Reviews. 2013;113(7): 4905–4979. https://doi.org/10.1021/cr200409f
Ayankojo A. G., Reut J., Nguyen V. B. C., Boroznjak R., Syritski V. Advances in detection of antibiotic pollutants in aqueous media using molecular imprinting technique – a review. Biosensors. 2022;12(7): 441. https://doi.org/10.3390/bios12070441
Maier T. M., Arbuznikov A. V., Kaupp M. Local hybrid functionals: theory, implementation, and performance of an emerging new tool in quantum chemistry and beyond. WIREs Computational Molecular Science. 2019;9(1): 1378. https://doi.org/10.1002/wcms.1378
Ghalla H., Issaoui N., Govindarajan M., Flakus H., Jamroz M., Oujia B. Spectroscopic and molecular structure investigation of 2-furanacrylic acid monomer and dimer using HF and DFT methods. Journal of Molecular Structure. 2014; 1059: 132–143. https://doi.org/10.1016/j.molstruc.2013.11.037
Azeez Y. H., Kareem R. O., Qader A. F., Omer R. A., Ahmed L. O. Spectroscopic characteristics, stability, reactivity, and corrosion inhibition of ahpe-dop compounds incorporating (B, Fe, Ga, Ti): a DFT investigation. Next Materials. 2024;3: 100184. https://doi.org/10.1016/j.nxmate.2024.100184
Kareem R. O., Kebiroglu H., Hamad O. A. Investigation of electronic and spectroscopic properties of phosphosilicate glass molecule (BioGlass 45S5) and Ti-BioGlass 45S5 by quantum programming. Journal of Chemistry Letters. 2024; 4(4): 200–210. https://doi.org/10.22034/jchemlett.2024.416584.1138
Shukla S., Srivastava A., Kumar P., Tandon P., Maurya R., Singh R. Vibrational spectroscopic, NBO, AIM, and multiwfn study of tectorigenin: a DFT approach. Journal of Molecular Structure. 2020;1217: 128443. https://doi.org/10.1016/j.molstruc.2020.128443
Nadr R. B., Abdulrahman B. S., Azeez Y. H., Omer R. A., Kareem R.O. Quantum chemical calculation for synthesis some thiazolidin-4-one derivatives. Journal of Molecular Structure. 2024;1308: 138055. https://doi.org/10.1016/j.molstruc.2024.138055
Mamand D. M., Azeez Y. H., Qadr H. M. Monte Carlo and DFT calculations on the corrosion inhibition efficiency of some benzimide molecules. Mongolian Journal of Chemistry. 2023;24(50): 1–10. https://doi.org/10.5564/mjc.v24i50.2435
Azeez Y. H., Kareem R. O., Hamad O., … Kaygılı O. Quantum chemical calculation employed for investigation mesitylene compound. Journal of Physical Chemistry and Functional Materials. 2024;7(1): 17–27. https://doi.org/10.54565/jphcfum.1350445
Issaoui N., Abdessalem K., Ghalla H., Yaghmour S. J., Calvo F., Oujia B. Theoretical investigation of the relative stability of Na+Hen (n = 2–24) clusters: Many-body versus delocalization effects. The Journal of Chemical Physics. 2014;141(17). https://doi.org/10.1063/1.4900873
Gong Y. Structure-property relationships of dyes as applied to dye-sensitized solar cells. 2018. Repository. https://doi.org/10.17863/CAM.22164
Raja M., Muhamed R. R., Muthu S., Suresh M. Synthesis, spectroscopic (FT-IR, FT-Raman, NMR, UV–Visible), NLO, NBO, HOMO-LUMO, Fukui function and moleculardockingstudy of (E)-1-(5-bromo-2-hydroxybenzylidene)semicarbazide. Journal of Molecular Structure. 2017;1141: 284–298. https://doi.org/10.1016/j.molstruc.2017.03.117
Vijayakumari G., Iyandurai N., Raja M., … Muthu S. Chemical reactivity, solvent effects, spectroscopic (FTIR, Raman, SERS, UV–Visible), Hirshfeld analyses and antimalarial investigation of 3-Acetylbenzoic acid. Chemical Physics Impact. 2023;6: 100190. https://doi.org/10.1016/j.chphi.2023.100190
Mohammed B. A., Kareem R. O., Hamad O. A., Kebiroglu H. The electronic structure and physicochemical characteristics of chlorohydroquinone compounds using density functional theory and Hartree-Fock techniques. South African Journal Chemistry. 2024;78: 85–94. https://doi.org/10.17159/0379-4350/2024/v78a12
Kareem R. O., Hanifi Kebiroğlu M., Hamad O. A. H., Kaygili O., Bulut N. Epinephrine compound: unveiling its optical and thermochemical properties via quantum computation methods. https://doi.org/10.2139/ssrn.4603446
Hamad O., Kareem R. O., Kaygılı O. Density function theory study of the physicochemical characteristics of 2-itrophenol. Journal of Physical Chemistry and Functional Materials. 2023;6(1): 70–76. https://doi.org/10.54565/jphcfum.1273771
Moss T. A relationship between the refractive index and the Infra-Red threshold of sensitivity for photoconductors. Proceedings of the Physical Society Section B. 1950;63(3): 167. https://doi.org/10.1088/0370-1301/63/3/302
Ravindra N., Auluck S., Srivastava V. On the penn gap in semiconductors. Physica Status Solidi (b). 1979;93(2): K155–K160. https://doi.org/10.1002/pssb.2220930257
Reddy R., Gopal K. R., Narasimhulu K., … Kumar M. R. Interrelationship between structural, optical, electronic and elastic properties of materials. Journal of Alloys and Compounds. 2009;473(1-2): 28–35.
https://doi.org/10.1016/j.jallcom.2008.06.037
Kumar V., Singh J. Model for calculating the refractive index of different materials. NIScPR Online Periodicals Repository. 2010;48(08): 571–574.
Copyright (c) 2025 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases

This work is licensed under a Creative Commons Attribution 4.0 International License.