DFT analysis: correlation of epinephrine HOMO-LUMO, refractive index, optical electronegativity, and electrical conductivity with Substituted Halogens (F, Cl, Br)
Abstract
Purpose: Epinephrine (EP) may affect lipid and glucose metabolism in addition to haemodynamic parameters, according to a number of studies. This study’s primary goal was to provide a theoretical computer analysis of the EP molecule by including halogens like fluorine (F), chlorine (Cl), and bromine (Br): (EP, EP-Br, EP-Cl, and EP-F).
Experimental part: The Gaussian program was used to obtain the optimal shape of the EP compound, and the DFT/6-311G (d,p) basis set and B3LYP level of theory were employed. Quantum chemistry properties were then analyzed, including the energy gap (EHOMO-ELUMO), reduced density gradient (RDG), density of states (DOS), and molecular electrostatic potential (MEP) on surfaces.
Conclusions: The results showed that the larger refractive index of the EP-F molecule was associated with a higher value of EP-F (0.446 eV-1) molecular softness, while the EP molecule exhibited higher hardness (η) (2.296 eV) and a smaller refractive index. On the other hand, a smaller bandgap for EP-F (4.483 eV) indicated reduced chemical stability, increased electron dispersion, a lower work function (2.40682 eV), and improved electrical conductivity (σ = 1.249). According to our Electron Localized Function (ELF) topological analysis data, the group of H atoms had a red patch around them, indicating an abundance of delocalized electrons
Downloads
References
Body J.-J., Cryer P. E., Offord K. P., Heath H. Epinephrine is a hypophosphatemic hormone in man. Physiological effects of circulating epinephrine on plasma calcium, magnesium, phosphorus, parathyroid hormone, and calcitonin. The Journal of Clinical Investigation. 1983;71(3): 572–578. https://doi.org/10.1172/JCI110802
Sun Y., Wang Y., Yang Y., Yang M . An electrochemiluminescent sensor for epinephrine detection based on graphitic carbon nitride nanosheet/multi-walled carbon nanotubes nanohybrids. Chemistry Letters. 2019;48(3): 215–218. https://doi.org/10.1246/cl.180893
Sisecioglu M., Gulcin I., Cankaya M., Atasever A., Ozdemir H. The effects of norepinephrine on lactoperoxidase enzyme (LPO). Scientific Research and Essays. 2010;5(11): 1351–1356.
Kruger L. Pheroid technology for the transdermal delivery of lidocaine and prilocaine. North-West University, 2008.
Bandyopadhyay P., Karmakar A., Deb J., Sarkar U., Seikh M. M. Non-covalent interactions between epinephrine and nitroaromatic compounds: a DFT study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2020;228: 117827. https://doi.org/10.1016/j.saa.2019.117827
Gámez-García V., Cortés-Romero C., Palomar-Pardavé M., … Cuan A. Theoretical study on the chemical stability of adrenalin species. Revista Mexicana de Física. 2013;59(1): 135–140.
Priya A. M., Aazaad B., Biju D. M. A density functional theory investigation on norepinephrine interaction with amino acids and alcohols. Journal of Molecular Structure. 2023; 1283: 135305. https://doi.org/10.1016/j.molstruc.2023.135305
Dugas H., Penney C. Bioorganic chemistry: a chemical approach to enzyme action. Springer Science & Business Media: 2013.
Sanderson R. Chemical bonds and bonds energy. Elsevier: 2012; Vol. 21.
Silva D. R., Silla J. M., Santos L. A., da Cunha E. F., Freitas M. P. The role of intramolecular interactions on the bioactive conformation of epinephrine. Molecular Informatics. 2019; 38(6): 1800167. https://doi.org/10.1002/minf.201800167
Špirtović-Halilović S., Salihović M., Veljović E., Osmanović A., Trifunović S., Završnik D. Chemical reactivity and stability predictions of some coumarins by means of DFT calculations. Bulletin of the Chemists and Technologists of Bosnia and Herzegovina. 2014;43: 57–60.
Choudhary V., Bhatt A., Dash D., Sharma N. DFT calculations on molecular structures, HOMO–LUMO study, reactivity descriptors and spectral analyses of newly synthesized diorganotin (IV) 2-hloridophenylacetohydroxamate complexes. Journal of Computational Chemistry. 2019;40(27): 2354–2363. https://doi.org/10.1002/jcc.26012
Soro D., Ekou L., Koné M. G.-R., Ekou T., Ziao N. DFT study of molecular stability and reactivity on some hydroxamic acids: an approach by Hirshfeld population analysis. European Journal of Engineering and Technology Research. 2019;4 (2): 45-49. https://doi.org/10.24018/ejeng.2019.4.2.1121
Khamooshi F., Doraji-Bonjar S., Akinnawo A. S., Ghaznavi H., Salimi-Khorashad A., Khamooshi M. J. Dark classics in chemical neuroscience: comprehensive study on the biochemical mechanisms and clinical implications of opioid analgesics. Chemical Methodologies. 2023;7: 964–993. https://doi.org/10.48309/chemm.2023.414616.1731
Nasih R. L., Hussin V. K., Hamad O. A., Kareem R. O. Theoretical study chlorohydroquinone molecule with substituted lithium via quantum computation approach. Chemical Research and Technology. 2024;1: 73–77. https://doi.org/10.2234/chemrestec.2024.448968.1009
Hamad O., Kareem R. O., Kaygili O., Materials F. Density function theory study of the physicochemical characteristics of 2-nitrophenol. 2023;6(1): 70–76. Journal of Physical Chemistry and Functional Materials. https://doi.org/10.54565/jphcfum.1273771
Kareem R. O., Kebiroğlu M. H., Hamad O. A., Kaygili O., Bulut N. Epinephrine сompound: unveiling its optical and thermochemical properties via quantum computation methods. Chemical Review and Letters. 2023;6: 415–427. https://doi.org/10.22034/CRL.2023.421325.1253
Hussein Y. T., Azeez Y. H. DFT analysis and in silico exploration of drug-likeness, toxicity prediction, bioactivity score, and chemical reactivity properties of the urolithins. Journal of Biomolecular Structure and Dynamics. 2023;41(4): 1168–1177. https://doi.org/10.1080/07391102.2021.2017350
Hussein Y., Yousif A., Ahmed M. I. In silico exploration of pharmacological and molecular descriptor properties of salacinol and its related analogues. Journal of the Turkish Chemical Society Section A: Chemistry. 2024;11(1): 279–290. https://doi.org/10.18596/jotcsa.1246781
Kareem R. O., Kebiroglu H., Hamad O. A. Investigation of electronic and spectroscopic properties of phosphosilicate glass molecule (BioGlass 45S5) and Ti-BioGlass 45S5 by quantum programming. Journal of Chemistry Letters. 2024; 4(4): 200–210. https://doi.org/10.22034/jchemlett.2024.416584.1138
Nadr R. B., Abdulrahman B. S., Azeez Y. H., Omer R. A., Kareem R. O. Quantum chemical calculation for synthesis some thiazolidin-4-one derivatives. Journal of Molecular Structure. 2024;1308: 138055. https://doi.org/10.1016/j.molstruc.2024.138055
Javed M., Khan M. U., Hussain R., Ahmed S., Ahamad T. J. R. Deciphering the electrochemical sensing capability of novel Ga12As12 nanocluster towards chemical warfare phosgene gas: insights from DFT. RSC Advances. 2023;13(41): 28885–28903. https://doi.org/10.1039/D3RA05086F
Louis H., Etiese D., Unimuke T. O., … Nfor E. N. Computational design and molecular modeling of the interaction of nicotinic acid hydrazide nickel-based complexes with H2S gas. RSC Advances. 2022;12(47): 30365–30380. https://doi.org/10.1039/D2RA05456F
Moss T. A relationship between the refractive index and the Infra-Red threshold of sensitivity for photoconductors. Proceedings of the Physical Society. Section B. 1950;63(3): 167. https://doi.org/10.1088/0370-1301/63/3/302
Ravindra N., Auluck S., Srivastava V. On the penn gap in semiconductors. Physica Status Solidi (b). 1979;93(2): K155–K160. https://doi.org/10.1002/pssb.2220930257
Reddy R., Gopal K. R., Narasimhulu K., … Kumar M. R. Interrelationship between structural, optical, electronic and elastic properties of materials. Journal of Alloys and Compounds. 2009;473(1-2): 28–35. https://doi.org/10.1016/j.jallcom.2008.06.037
Kumar V., Singh J. Model for calculating the refractive index of different materials. Indian Journal of Pure & Applied Physics. 2010;48(08): 571–574. Available at: https://scispace.com/pdf/model-for-calculating-the-refractive-index-ofdifferent-2gqk94u0ae.pdf
Akintemi E. O., Govende K. K., Singh T. A DFT study of the chemical reactivity properties, spectroscopy and bioactivity scores of bioactive flavonols. Computational and Theoretical Chemistry. 2022;1210: 113658. https://doi.org/10.1016/j.comptc.2022.113658
Omer R. A., Ahmed L. O., Koparir M., Koparir P. Theoretical analysis of the reactivity of chloroquine and hydroxychloroquine. Indian Journal of Chemistry -Section A (IJCA). 2020;59(12). https://doi.org/10.56042/ijca.v59i12.33714
Rebaz O., Ahmed L., Jwameer H., Koparir P. Structural analysis of epinephrine by combination of density functional theory and Hartree-Fock methods. El-Cezeri Journal of Science and Engineering. 2022;9(2): 760–776. https://doi.org/10.31202/ecjse.1005202
Kucuk C., Yurdakul S., Özdemir N., Erdem B. Structural and spectroscopic characterization, electronic properties, and biological activity of the 4-(3-methoxyphenyl) piperazin-1-ium 4-(3-methoxyphenyl) piperazine-1-
carboxylate monohydrate. Chemical Papers. 2023;77(5): 2793–2815. https://doi.org/10.1007/s11696-023-02667-w
Sharma P., Ranjan P., Chakraborty T. Study of Tlbased perovskite materials TlZX3 (Z= Ge, Sn, Be, Sr, X= Cl, Br, I) for application in scintillators: DFT and TD-DFT approach. Chemical Physics Impact. 2023;7: 100344. https://doi.org/10.1016/j.chphi.2023.100344
Shahab H., Husain Y. Theoretical study for chemical reactivity descriptors of tetrathiafulvalene in gas phase and solvent phases based on density functional theory. Passer Journal of Basic and Applied Sciences. 2021;3(2): 167–173. https://doi.org/10.24271/psr.28
Venkatesh G., Sheena Mary Y., Shymamary Y., Palanisamy V., Govindaraju M. Quantum chemical and molecular docking studies of some phenothiazine derivatives. Journal of Applied Organometallic Chemistry. 2021;1(3): 148–158. https://doi.org/10.22034/jaoc.2021.303059.1033
Adole V. A. Computational chemistry approach for the investigation of structural, electronic, chemical and quantum chemical facets of twelve biginelli adducts. Journal of Applied Organometallic Chemistry. 2021;1(1): 29–40. https://doi.org/10.22034/jaoc.2021.278598.1009 36. Shojaie F. Quantum computations of interactions of most reactive tricyclic antidepressant drug with carbon nanotube, serotonin and norepinephrin. Chemical Methodologies. 2020;4(4): 447–466. https://doi.org/10.33945/SAMI/CHEMM.2020.4.7
Hariharan A., Vadlamudi P. SERS of epinephrine: a computational and experimental study. Journal of olecular
Structure. 2021;1246: 131163. https://doi.org/10.1016/j.molstruc.2021.131163
Yadav T., Sahu R. K., Mukherjee V. Molecular modeling and spectroscopic investigation of a neurotransmitter: epinephrine. Journal of Molecular Structure. 2019;1176: 94–109. https://doi.org/10.1016/j.molstruc.2018.08.077
Reddy R. R., Gopal K. R., Narasimhulu K., … Ahmed S. Correlation between optical electronegativity and refractive index of ternary chalcopyrites, semiconductors, insulators, oxides and alkali halides. Optical Materials. 2008;31(2): 209–212. https://doi.org/10.1016/j.optmat.2008.03.010
Naccarato F., Ricci F., Suntivich J., Hautier G., Wirtz L., Rignanese G.-M. Designing materials with high refractive index and wide band gap: a first-principles highthroughput study. APS March Meeting Abstracts. 2019, p S19. 003. https://doi.org/10.48550/arXiv.1809.01132
Kim C., Kim B., Lee S. M., Jo C., Lee Y. Electronic structures of capped carbon nanotubes under electric fields. Physical Review B. 2002;65(16): 165418. https://doi.org/10.1103/PhysRevB.65.165418
Xu P., Cui L., Gao S., Na N., Ebadi A. A theoretical study on sensing properties of in-doped ZnO nanosheet toward acetylene. Molecular Physics. 2022;120(5): e2002957. https://doi.org/10.1080/00268976.2021.2002957
El-Mageed H. R. A., Ibrahim M. A. A. Elucidating the adsorption and detection of amphetamine drug by pure and doped Al12N12, and Al12P12 nano-cages, a DFT study. Journal of Molecular Liquids. 2021;326: 115297. https://doi.org/10.1016/j.molliq.2021.115297
Lu T., Chen F. Multiwfn: a multifunctional wavefunction analyzer. Journal of Computational Chemistry. 2012;33(5): 580-592. https://doi.org/10.1002/jcc.22885
Humphrey W., Dalke A., Schulten K. VMD: visual molecular dynamics. Journal of Molecular Graphics. 1996;14 1): 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
Kareem R. O., Kaygili O., Ates T., … Ercan I. Experimental and theoretical characterization of Bi-based hydroxyapatites doped with Ce. Ceramics International. 2022;48(22): 33440–33454. https://doi.org/10.1016/j.ceramint.2022.07.287
Korkmaz A. A., Ahmed L. O., Kareem R. O., … Ates B. Theoretical and experimental characterization of Sn-based hydroxyapatites doped with Bi. Journal of the Australian Ceramic Society. 2022;58(3): 803–815. https://doi.org/10.1007/s41779-022-00730-5
İsen F., Kaygili O., Bulut N., … Ercan F. J., Experimental and theoretical characterization of Dy-doped ydroxyapatites. Journal of the Australian Ceramic Society. 2023;59(4): 849–864. https://doi.org/10.1007/s41779-023-00878-8
Kareem R. O. Synthesis and characterization of bismuth-based hydroxyapatites doped with cerium. Thesis for: Masters degree. 2023. Available at: https://www.researchgate.net/publication/368663130_Synthesis_and_Characterization_of_Bismuth-Based_Hydroxyapatites_Doped_with
Bulut N., Kaygili O., Hssain A. H., … Kareem R. O. Mg-dopant effects on band structures of Zn-based hydroxyapatites: a theoretical study. Iranian Journal of Science. 2023;47(5): 1843–1859. https://doi.org/10.1007/s40995-023-01531-6
Hamad O. A., Kareem R. O., Azeez Y. H., Kebiroğlu, M. H., Omer R. A., Zebari O. I. H. Quantum computing analysis of naphthalene compound: electronic structure, optical, and thermochemical approaches using DFT and F. Journal of Applied Organometallic Chemistry. 2024;4(2): 100-118. https://doi.org/10.48309/jaoc.2024.444132.1167
Copyright (c) 2025 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases

This work is licensed under a Creative Commons Attribution 4.0 International License.