DFT analysis: correlation of epinephrine HOMO-LUMO, refractive index, optical electronegativity, and electrical conductivity with Substituted Halogens (F, Cl, Br)

Keywords: Epinephrine, DFT, Refractive Index, Electron Localized Function (ELF), Electrical Conductivity, Optical Electronegativity

Abstract

Purpose: Epinephrine (EP) may affect lipid and glucose metabolism in addition to haemodynamic parameters, according to a number of studies. This study’s primary goal was to provide a theoretical computer analysis of the EP molecule by including halogens like fluorine (F), chlorine (Cl), and bromine (Br): (EP, EP-Br, EP-Cl, and EP-F).

Experimental part: The Gaussian program was used to obtain the optimal shape of the EP compound, and the DFT/6-311G (d,p) basis set and B3LYP level of theory were employed. Quantum chemistry properties were then analyzed, including the energy gap (EHOMO-ELUMO), reduced density gradient (RDG), density of states (DOS), and molecular electrostatic potential (MEP) on surfaces.

Conclusions: The results showed that the larger refractive index of the EP-F molecule was associated with a higher value of EP-F (0.446 eV-1) molecular softness, while the EP molecule exhibited higher hardness (η) (2.296 eV) and a smaller refractive index. On the other hand, a smaller bandgap for EP-F (4.483 eV) indicated reduced chemical stability, increased electron dispersion, a lower work function (2.40682 eV), and improved electrical conductivity (σ = 1.249). According to our Electron Localized Function (ELF) topological analysis data, the group of H atoms had a red patch around them, indicating an abundance of delocalized electrons

Downloads

Download data is not yet available.

Author Biography

Rebaz Obaid Kareem, Physics Department, College of Science, University of Halabja, Halabja 46018, Iraq

M.Sc in General Physics, Lecturer at the Departmet of Physics, Faculty of Science, Physics
Department, Halabja University (Kurdistan Region, Iraq)

References

Body J.-J., Cryer P. E., Offord K. P., Heath H. Epinephrine is a hypophosphatemic hormone in man. Physiological effects of circulating epinephrine on plasma calcium, magnesium, phosphorus, parathyroid hormone, and calcitonin. The Journal of Clinical Investigation. 1983;71(3): 572–578. https://doi.org/10.1172/JCI110802

Sun Y., Wang Y., Yang Y., Yang M . An electrochemiluminescent sensor for epinephrine detection based on graphitic carbon nitride nanosheet/multi-walled carbon nanotubes nanohybrids. Chemistry Letters. 2019;48(3): 215–218. https://doi.org/10.1246/cl.180893

Sisecioglu M., Gulcin I., Cankaya M., Atasever A., Ozdemir H. The effects of norepinephrine on lactoperoxidase enzyme (LPO). Scientific Research and Essays. 2010;5(11): 1351–1356.

Kruger L. Pheroid technology for the transdermal delivery of lidocaine and prilocaine. North-West University, 2008.

Bandyopadhyay P., Karmakar A., Deb J., Sarkar U., Seikh M. M. Non-covalent interactions between epinephrine and nitroaromatic compounds: a DFT study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2020;228: 117827. https://doi.org/10.1016/j.saa.2019.117827

Gámez-García V., Cortés-Romero C., Palomar-Pardavé M., … Cuan A. Theoretical study on the chemical stability of adrenalin species. Revista Mexicana de Física. 2013;59(1): 135–140.

Priya A. M., Aazaad B., Biju D. M. A density functional theory investigation on norepinephrine interaction with amino acids and alcohols. Journal of Molecular Structure. 2023; 1283: 135305. https://doi.org/10.1016/j.molstruc.2023.135305

Dugas H., Penney C. Bioorganic chemistry: a chemical approach to enzyme action. Springer Science & Business Media: 2013.

Sanderson R. Chemical bonds and bonds energy. Elsevier: 2012; Vol. 21.

Silva D. R., Silla J. M., Santos L. A., da Cunha E. F., Freitas M. P. The role of intramolecular interactions on the bioactive conformation of epinephrine. Molecular Informatics. 2019; 38(6): 1800167. https://doi.org/10.1002/minf.201800167

Špirtović-Halilović S., Salihović M., Veljović E., Osmanović A., Trifunović S., Završnik D. Chemical reactivity and stability predictions of some coumarins by means of DFT calculations. Bulletin of the Chemists and Technologists of Bosnia and Herzegovina. 2014;43: 57–60.

Choudhary V., Bhatt A., Dash D., Sharma N. DFT calculations on molecular structures, HOMO–LUMO study, reactivity descriptors and spectral analyses of newly synthesized diorganotin (IV) 2-hloridophenylacetohydroxamate complexes. Journal of Computational Chemistry. 2019;40(27): 2354–2363. https://doi.org/10.1002/jcc.26012

Soro D., Ekou L., Koné M. G.-R., Ekou T., Ziao N. DFT study of molecular stability and reactivity on some hydroxamic acids: an approach by Hirshfeld population analysis. European Journal of Engineering and Technology Research. 2019;4 (2): 45-49. https://doi.org/10.24018/ejeng.2019.4.2.1121

Khamooshi F., Doraji-Bonjar S., Akinnawo A. S., Ghaznavi H., Salimi-Khorashad A., Khamooshi M. J. Dark classics in chemical neuroscience: comprehensive study on the biochemical mechanisms and clinical implications of opioid analgesics. Chemical Methodologies. 2023;7: 964–993. https://doi.org/10.48309/chemm.2023.414616.1731

Nasih R. L., Hussin V. K., Hamad O. A., Kareem R. O. Theoretical study chlorohydroquinone molecule with substituted lithium via quantum computation approach. Chemical Research and Technology. 2024;1: 73–77. https://doi.org/10.2234/chemrestec.2024.448968.1009

Hamad O., Kareem R. O., Kaygili O., Materials F. Density function theory study of the physicochemical characteristics of 2-nitrophenol. 2023;6(1): 70–76. Journal of Physical Chemistry and Functional Materials. https://doi.org/10.54565/jphcfum.1273771

Kareem R. O., Kebiroğlu M. H., Hamad O. A., Kaygili O., Bulut N. Epinephrine сompound: unveiling its optical and thermochemical properties via quantum computation methods. Chemical Review and Letters. 2023;6: 415–427. https://doi.org/10.22034/CRL.2023.421325.1253

Hussein Y. T., Azeez Y. H. DFT analysis and in silico exploration of drug-likeness, toxicity prediction, bioactivity score, and chemical reactivity properties of the urolithins. Journal of Biomolecular Structure and Dynamics. 2023;41(4): 1168–1177. https://doi.org/10.1080/07391102.2021.2017350

Hussein Y., Yousif A., Ahmed M. I. In silico exploration of pharmacological and molecular descriptor properties of salacinol and its related analogues. Journal of the Turkish Chemical Society Section A: Chemistry. 2024;11(1): 279–290. https://doi.org/10.18596/jotcsa.1246781

Kareem R. O., Kebiroglu H., Hamad O. A. Investigation of electronic and spectroscopic properties of phosphosilicate glass molecule (BioGlass 45S5) and Ti-BioGlass 45S5 by quantum programming. Journal of Chemistry Letters. 2024; 4(4): 200–210. https://doi.org/10.22034/jchemlett.2024.416584.1138

Nadr R. B., Abdulrahman B. S., Azeez Y. H., Omer R. A., Kareem R. O. Quantum chemical calculation for synthesis some thiazolidin-4-one derivatives. Journal of Molecular Structure. 2024;1308: 138055. https://doi.org/10.1016/j.molstruc.2024.138055

Javed M., Khan M. U., Hussain R., Ahmed S., Ahamad T. J. R. Deciphering the electrochemical sensing capability of novel Ga12As12 nanocluster towards chemical warfare phosgene gas: insights from DFT. RSC Advances. 2023;13(41): 28885–28903. https://doi.org/10.1039/D3RA05086F

Louis H., Etiese D., Unimuke T. O., … Nfor E. N. Computational design and molecular modeling of the interaction of nicotinic acid hydrazide nickel-based complexes with H2S gas. RSC Advances. 2022;12(47): 30365–30380. https://doi.org/10.1039/D2RA05456F

Moss T. A relationship between the refractive index and the Infra-Red threshold of sensitivity for photoconductors. Proceedings of the Physical Society. Section B. 1950;63(3): 167. https://doi.org/10.1088/0370-1301/63/3/302

Ravindra N., Auluck S., Srivastava V. On the penn gap in semiconductors. Physica Status Solidi (b). 1979;93(2): K155–K160. https://doi.org/10.1002/pssb.2220930257

Reddy R., Gopal K. R., Narasimhulu K., … Kumar M. R. Interrelationship between structural, optical, electronic and elastic properties of materials. Journal of Alloys and Compounds. 2009;473(1-2): 28–35. https://doi.org/10.1016/j.jallcom.2008.06.037

Kumar V., Singh J. Model for calculating the refractive index of different materials. Indian Journal of Pure & Applied Physics. 2010;48(08): 571–574. Available at: https://scispace.com/pdf/model-for-calculating-the-refractive-index-ofdifferent-2gqk94u0ae.pdf

Akintemi E. O., Govende K. K., Singh T. A DFT study of the chemical reactivity properties, spectroscopy and bioactivity scores of bioactive flavonols. Computational and Theoretical Chemistry. 2022;1210: 113658. https://doi.org/10.1016/j.comptc.2022.113658

Omer R. A., Ahmed L. O., Koparir M., Koparir P. Theoretical analysis of the reactivity of chloroquine and hydroxychloroquine. Indian Journal of Chemistry -Section A (IJCA). 2020;59(12). https://doi.org/10.56042/ijca.v59i12.33714

Rebaz O., Ahmed L., Jwameer H., Koparir P. Structural analysis of epinephrine by combination of density functional theory and Hartree-Fock methods. El-Cezeri Journal of Science and Engineering. 2022;9(2): 760–776. https://doi.org/10.31202/ecjse.1005202

Kucuk C., Yurdakul S., Özdemir N., Erdem B. Structural and spectroscopic characterization, electronic properties, and biological activity of the 4-(3-methoxyphenyl) piperazin-1-ium 4-(3-methoxyphenyl) piperazine-1-

carboxylate monohydrate. Chemical Papers. 2023;77(5): 2793–2815. https://doi.org/10.1007/s11696-023-02667-w

Sharma P., Ranjan P., Chakraborty T. Study of Tlbased perovskite materials TlZX3 (Z= Ge, Sn, Be, Sr, X= Cl, Br, I) for application in scintillators: DFT and TD-DFT approach. Chemical Physics Impact. 2023;7: 100344. https://doi.org/10.1016/j.chphi.2023.100344

Shahab H., Husain Y. Theoretical study for chemical reactivity descriptors of tetrathiafulvalene in gas phase and solvent phases based on density functional theory. Passer Journal of Basic and Applied Sciences. 2021;3(2): 167–173. https://doi.org/10.24271/psr.28

Venkatesh G., Sheena Mary Y., Shymamary Y., Palanisamy V., Govindaraju M. Quantum chemical and molecular docking studies of some phenothiazine derivatives. Journal of Applied Organometallic Chemistry. 2021;1(3): 148–158. https://doi.org/10.22034/jaoc.2021.303059.1033

Adole V. A. Computational chemistry approach for the investigation of structural, electronic, chemical and quantum chemical facets of twelve biginelli adducts. Journal of Applied Organometallic Chemistry. 2021;1(1): 29–40. https://doi.org/10.22034/jaoc.2021.278598.1009 36. Shojaie F. Quantum computations of interactions of most reactive tricyclic antidepressant drug with carbon nanotube, serotonin and norepinephrin. Chemical Methodologies. 2020;4(4): 447–466. https://doi.org/10.33945/SAMI/CHEMM.2020.4.7

Hariharan A., Vadlamudi P. SERS of epinephrine: a computational and experimental study. Journal of olecular

Structure. 2021;1246: 131163. https://doi.org/10.1016/j.molstruc.2021.131163

Yadav T., Sahu R. K., Mukherjee V. Molecular modeling and spectroscopic investigation of a neurotransmitter: epinephrine. Journal of Molecular Structure. 2019;1176: 94–109. https://doi.org/10.1016/j.molstruc.2018.08.077

Reddy R. R., Gopal K. R., Narasimhulu K., … Ahmed S. Correlation between optical electronegativity and refractive index of ternary chalcopyrites, semiconductors, insulators, oxides and alkali halides. Optical Materials. 2008;31(2): 209–212. https://doi.org/10.1016/j.optmat.2008.03.010

Naccarato F., Ricci F., Suntivich J., Hautier G., Wirtz L., Rignanese G.-M. Designing materials with high refractive index and wide band gap: a first-principles highthroughput study. APS March Meeting Abstracts. 2019, p S19. 003. https://doi.org/10.48550/arXiv.1809.01132

Kim C., Kim B., Lee S. M., Jo C., Lee Y. Electronic structures of capped carbon nanotubes under electric fields. Physical Review B. 2002;65(16): 165418. https://doi.org/10.1103/PhysRevB.65.165418

Xu P., Cui L., Gao S., Na N., Ebadi A. A theoretical study on sensing properties of in-doped ZnO nanosheet toward acetylene. Molecular Physics. 2022;120(5): e2002957. https://doi.org/10.1080/00268976.2021.2002957

El-Mageed H. R. A., Ibrahim M. A. A. Elucidating the adsorption and detection of amphetamine drug by pure and doped Al12N12, and Al12P12 nano-cages, a DFT study. Journal of Molecular Liquids. 2021;326: 115297. https://doi.org/10.1016/j.molliq.2021.115297

Lu T., Chen F. Multiwfn: a multifunctional wavefunction analyzer. Journal of Computational Chemistry. 2012;33(5): 580-592. https://doi.org/10.1002/jcc.22885

Humphrey W., Dalke A., Schulten K. VMD: visual molecular dynamics. Journal of Molecular Graphics. 1996;14 1): 33–38. https://doi.org/10.1016/0263-7855(96)00018-5

Kareem R. O., Kaygili O., Ates T., … Ercan I. Experimental and theoretical characterization of Bi-based hydroxyapatites doped with Ce. Ceramics International. 2022;48(22): 33440–33454. https://doi.org/10.1016/j.ceramint.2022.07.287

Korkmaz A. A., Ahmed L. O., Kareem R. O., … Ates B. Theoretical and experimental characterization of Sn-based hydroxyapatites doped with Bi. Journal of the Australian Ceramic Society. 2022;58(3): 803–815. https://doi.org/10.1007/s41779-022-00730-5

İsen F., Kaygili O., Bulut N., … Ercan F. J., Experimental and theoretical characterization of Dy-doped ydroxyapatites. Journal of the Australian Ceramic Society. 2023;59(4): 849–864. https://doi.org/10.1007/s41779-023-00878-8

Kareem R. O. Synthesis and characterization of bismuth-based hydroxyapatites doped with cerium. Thesis for: Masters degree. 2023. Available at: https://www.researchgate.net/publication/368663130_Synthesis_and_Characterization_of_Bismuth-Based_Hydroxyapatites_Doped_with

Bulut N., Kaygili O., Hssain A. H., … Kareem R. O. Mg-dopant effects on band structures of Zn-based hydroxyapatites: a theoretical study. Iranian Journal of Science. 2023;47(5): 1843–1859. https://doi.org/10.1007/s40995-023-01531-6

Hamad O. A., Kareem R. O., Azeez Y. H., Kebiroğlu, M. H., Omer R. A., Zebari O. I. H. Quantum computing analysis of naphthalene compound: electronic structure, optical, and thermochemical approaches using DFT and F. Journal of Applied Organometallic Chemistry. 2024;4(2): 100-118. https://doi.org/10.48309/jaoc.2024.444132.1167

Published
2025-04-11
How to Cite
Kareem, R. O. (2025). DFT analysis: correlation of epinephrine HOMO-LUMO, refractive index, optical electronegativity, and electrical conductivity with Substituted Halogens (F, Cl, Br). Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 27(2), 237-250. https://doi.org/10.17308/kcmf.2025.27/12822
Section
Original articles