Dielectric and piezoelectric properties of ceramic material based on modified lead zirconate titanate
Abstract
Purpose: A new high-entropy ferroelectric material 0.9Pb0.95Sr0.05(Zr0.52Ti0.48)O3-0.05Pb(Zn1/3Nb2/3)O3-0.05Pb(Mn1/3Sb2/3)O3 was synthesized. At room temperature, it has a tetragonal perovskite-like crystal lattice and is characterized by a high electromechanical quality factor.
Experimental: The dielectric properties was studied in the temperature range of 20 – 500 °C at frequencies of 0.5 – 500 kHz. A noticeable decrease in the temperature of the ferroelectric phase transition (Tm) in сomparison with the base composition Pb0.95Sr0.05(Zr0.52Ti0.48)O3 and its diffusion were revealed.
Conclusions: Analysis of experimental data suggests that the material under study is an “intermediate link” between conventional andrelaxor ferroelectrics
Downloads
References
Yang B., Liu Y., Lan S., … Lin Y. H. High-entropy design for dielectric materials: status, challenges, and beyond. Journal of Applied Physics. 2023;133(11): 110904. https://doi.org/10.1063/5.0138877
Palneedi H., Peddigari M., Hwang G. T., Jeong D. Y., Ryu J. High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Advanced Functional Materials. 2018;28(42): 1803665. https://doi.org/10.1002/adfm.201803665
Zhou S., Pu Y., Zhang X., … Wang D. High energy density, temperature stable lead-free ceramics by introducing high entropy perovskite oxide. Chemical Engineering Journal. 2022;427(1): 131684. https://doi.org/10.1016/j.cej.2021.131684
Hou Y. D., Zhu M. K., Tian C. S., Yan H. Structure and electrical properties of PMZN–PZT quaternary. Sensors and Actuators A: Physical. 2004;116(3): 455–460. https://doi.org/10.1016/j.sna.2004.05.012
He L. X., Li, C. E. Effects of addition of MnO on piezoelectric properties of lead zirconate titanate. Journal of Materials Science. 2000;35(1): 2477–2480. https://doi.org/10.1023/A:1004717702149
Li H., Yang Z., Wei L., Chang Y. Effect of ZnO addition on the sintering and electrical properties of (Mn,W)-doped PZT–PMS–PZN ceramics. Materials Research Bulletin. 2009;44(3): 638–643. https://doi.org/10.1016/j.materresbull.2008.06.024
Liu Y., Yang J., Deng S., … Chen J. Flexible polarization configuration in high-entropy piezoelectrics with high erformance. Acta Materialia. 2022;236(1): 118115. https://doi.org/10.1016/j.actamat.2022.118115
Tu L. L., Jin Y. Y., Han M. Z. Piezoelectric ceramic transformer. Ferroelectrics. 1980;28(1): 403–406. https://doi.org/10.1080/00150198008227120
Jaffe B., Cook W. R., Jaffe H. Piezoelectric ceramics. Academic Press, London and New York, 1971. 317 p.
Smolensky G. A., Bokov V. A., Isupov V. A., Krainik N. N., Pasynkov R. E., Shur M. S. Ferroelectrics and antiferroelectrics*. Leningrad: Nauka Publ., 1971. 476 p. (InRuss.)
Bokov A. A. Recent advanced in diffuse ferroelectric phase transitions. Ferroelectrics. 1992;131(1): 49–55. https://doi.org/10.1080/00150199208223391
Cross L. E. Relaxor ferroelectrics: an overview. Ferroelectrics. 1994;151(1): 305–320. https://doi.org/10.1080/00150199408244755
Glinchuk M. D., Farhi R. A random field theory-based model for ferroelectric relaxors. Journal of Physics: Condensed Matter. 1996;8(37): 6985–6996. https://doi.org/10.1088/0953-8984/8/37/019
Pirc R., Blinc R. Spherical random-bond–randomfield model of relaxor ferroelectrics. Physical Review B. 1999;60(19): 13470–13478. https://doi.org/10.1103/PhysRevB.60.13470
Feltz A. Amorphe und glasartige anorganische festkörper. Berlin: Akademie – Verlag; 1983. 480 p. https://doi.org/10.1515/9783112611463 (In German)
Korotkov L. N., Rogova S. P., Pavlova N. G. Dielectric properties of (1-x)[0.7PbZrO3·- 0.3K0.5Bi0.5TiO3] - xSrTiO3 solid solutions in the vicinity of phase transitions, Tech. Phys. 1999;44(3): 295–298. https://doi.org/10.1134/1.1259240
Copyright (c) 2025 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases

This work is licensed under a Creative Commons Attribution 4.0 International License.








