Dielectric and piezoelectric properties of ceramic material based on modified lead zirconate titanate

Keywords: High-entropy ferroelectrics, Electromechanical quality factor, Permittivity, Diffuse phase transition, Dielectric relaxation

Abstract

Purpose: A new high-entropy ferroelectric material 0.9Pb0.95Sr0.05(Zr0.52Ti0.48)O3-0.05Pb(Zn1/3Nb2/3)O3-0.05Pb(Mn1/3Sb2/3)O3 was synthesized. At room temperature, it has a tetragonal perovskite-like crystal lattice and is characterized by a high electromechanical quality factor.

Experimental: The dielectric properties was studied in the temperature range of 20 – 500 °C at frequencies of 0.5 – 500 kHz. A noticeable decrease in the temperature of the ferroelectric phase transition (Tm) in  сomparison with the base composition Pb0.95Sr0.05(Zr0.52Ti0.48)O3 and its diffusion were revealed.

Conclusions: Analysis of experimental data suggests that the material under study is an “intermediate link” between conventional andrelaxor ferroelectrics

Downloads

Download data is not yet available.

Author Biographies

Leonid N. Korotkov, Voronezh State Technical University, 20 let Oktyabrya st., 84, Voronezh 394006, Russian Federation

Dr. Sci. (Phys.–Math), Professor at the Department of Solid-State Electronics, Voronezh State
Technical University (Voronezh, Russian Federation)

Nikita A. Tolstykh, Voronezh State Technical University, 20 let Oktyabrya st., 84, Voronezh 394006, Russian Federation

Cand. Sci. (Phys.–Math.), Head of the Scientific and Educational Laboratory «Functional Materials»,
Voronezh State Technical University (Voronezh, Russian Federation)

Ivan I. Popov, Voronezh State Technical University, 20 let Oktyabrya st., 84, Voronezh 394006, Russian Federation

Cand. Sci. (Phys.–Math.), Senior Lecturer at the Department of Solid-State Electronics, Voronezh State
Technical University (Voronezh, Russian Federation)

Alexey I. Bocharov, Voronezh State Technical University, 20 let Oktyabrya st., 84, Voronezh 394006, Russian Federation

Leading Engineer of the BREC «Thermoelectric Phenomena», Voronezh State Technical
University (Voronezh, Russian Federation)

Maxim A. Kashirin, Voronezh State Technical University, 20 let Oktyabrya st., 84, Voronezh 394006, Russian Federation

Engineer of the Scientific and Educational Laboratory «Functional Materials, Voronezh
State Technical University (Voronezh, Russian Federation)

References

Yang B., Liu Y., Lan S., … Lin Y. H. High-entropy design for dielectric materials: status, challenges, and beyond. Journal of Applied Physics. 2023;133(11): 110904. https://doi.org/10.1063/5.0138877

Palneedi H., Peddigari M., Hwang G. T., Jeong D. Y., Ryu J. High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Advanced Functional Materials. 2018;28(42): 1803665. https://doi.org/10.1002/adfm.201803665

Zhou S., Pu Y., Zhang X., … Wang D. High energy density, temperature stable lead-free ceramics by introducing high entropy perovskite oxide. Chemical Engineering Journal. 2022;427(1): 131684. https://doi.org/10.1016/j.cej.2021.131684

Hou Y. D., Zhu M. K., Tian C. S., Yan H. Structure and electrical properties of PMZN–PZT quaternary. Sensors and Actuators A: Physical. 2004;116(3): 455–460. https://doi.org/10.1016/j.sna.2004.05.012

He L. X., Li, C. E. Effects of addition of MnO on piezoelectric properties of lead zirconate titanate. Journal of Materials Science. 2000;35(1): 2477–2480. https://doi.org/10.1023/A:1004717702149

Li H., Yang Z., Wei L., Chang Y. Effect of ZnO addition on the sintering and electrical properties of (Mn,W)-doped PZT–PMS–PZN ceramics. Materials Research Bulletin. 2009;44(3): 638–643. https://doi.org/10.1016/j.materresbull.2008.06.024

Liu Y., Yang J., Deng S., … Chen J. Flexible polarization configuration in high-entropy piezoelectrics with high erformance. Acta Materialia. 2022;236(1): 118115. https://doi.org/10.1016/j.actamat.2022.118115

Tu L. L., Jin Y. Y., Han M. Z. Piezoelectric ceramic transformer. Ferroelectrics. 1980;28(1): 403–406. https://doi.org/10.1080/00150198008227120

Jaffe B., Cook W. R., Jaffe H. Piezoelectric ceramics. Academic Press, London and New York, 1971. 317 p.

Smolensky G. A., Bokov V. A., Isupov V. A., Krainik N. N., Pasynkov R. E., Shur M. S. Ferroelectrics and antiferroelectrics*. Leningrad: Nauka Publ., 1971. 476 p. (InRuss.)

Bokov A. A. Recent advanced in diffuse ferroelectric phase transitions. Ferroelectrics. 1992;131(1): 49–55. https://doi.org/10.1080/00150199208223391

Cross L. E. Relaxor ferroelectrics: an overview. Ferroelectrics. 1994;151(1): 305–320. https://doi.org/10.1080/00150199408244755

Glinchuk M. D., Farhi R. A random field theory-based model for ferroelectric relaxors. Journal of Physics: Condensed Matter. 1996;8(37): 6985–6996. https://doi.org/10.1088/0953-8984/8/37/019

Pirc R., Blinc R. Spherical random-bond–randomfield model of relaxor ferroelectrics. Physical Review B. 1999;60(19): 13470–13478. https://doi.org/10.1103/PhysRevB.60.13470

Feltz A. Amorphe und glasartige anorganische festkörper. Berlin: Akademie – Verlag; 1983. 480 p. https://doi.org/10.1515/9783112611463 (In German)

Korotkov L. N., Rogova S. P., Pavlova N. G. Dielectric properties of (1-x)[0.7PbZrO3·- 0.3K0.5Bi0.5TiO3] - xSrTiO3 solid solutions in the vicinity of phase transitions, Tech. Phys. 1999;44(3): 295–298. https://doi.org/10.1134/1.1259240

Published
2025-09-25
How to Cite
Korotkov, L. N., Tolstykh, N. A., Popov, I. I., Bocharov, A. I., & Kashirin, M. A. (2025). Dielectric and piezoelectric properties of ceramic material based on modified lead zirconate titanate. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 27(3), 391-397. https://doi.org/10.17308/kcmf.2025.27/13015
Section
Original articles