Coupled phenomena of concentration polarization in systems with anion-exchange membranes before and after their participation in electrodialysis of tartrate-containing solutions

Keywords: Electrodialysis, Tartrates, Anion-exchange membranes, Current-voltage curves, Limiting current, Electroconvection, Catalytic water dissociation

Abstract

Objective: Homogeneous anion-exchange membrane ASE and heterogeneous anion-exchange membrane MA-41P were investigated in 20±1 mM NaxH(2-x)T solutions with pH 2.5 and 9.0, where T represents the acid residue of tartaric acid. Optical images and contact angles of membrane surfaces, as well as their current-voltage curves and pH of desalinated solutions, were measured before and after using ASE and MA-41P in electrodialysis.

Experimental results: It was established that in alkaline solution, the patterns of concentration polarization development do not differ from those well-known for strong electrolytes. In acidic solution, the ability of tartrates to participate in protonation-deprotonation reactions causes a 4–5 fold increase in the empirical limiting current compared to the theoretical limiting current calculated within the convective-diffusion model. The mechanisms of tartrate transfer through anion-exchange membranes are considered when the desalinated solution mainly contains tartaric acid molecules.

Conclusions: It is shown that long-term operation (about 50 hours) under intensive current regimes leads to the appearance of numerous caverns on the ASE surface and to an increase in the proportion of ion-exchange material on the MA-41P surface. The surfaces of both membranes become more hydrophobic. Analysis of current-voltage curves suggests that electrochemical degradation of the ASE surface and specific interactions of tartrates with weakly basic fixed groups of both membranes lead to reduced proton generation and affect the development of electroconvection

Downloads

Download data is not yet available.

Author Biographies

Olesya A. Yurchenko, Kuban State Technological University 149 Stavropolskaya st., Krasnodar 350040, Russian Federation

Cand. Sci. (Chem.), Junior Research Fellow, Department of Physical Chemistry, Kuban State
University (Krasnodar, Russian Federation)

Ksenia V. Solonchenko, Kuban State Technological University 149 Stavropolskaya st., Krasnodar 350040, Russian Federation

postgraduate student, Engineer, Department of Physical Chemistry, Kuban State University
(Krasnodar, Russian Federation)

Natalia D. Pismenskaya, Kuban State Technological University 149 Stavropolskaya st., Krasnodar 350040, Russian Federation

Dr. Sci. (Chem.), Professor at the Department of Physical Chemistry, Kuban State University
(Krasnodar, Russian Federation)

References

Andrés L. J., Riera F. A., Alvarez R. Recovery and concentration by electrodialysis of tartaric acid from fruit juice industries waste waters. Journal of Chemical Technology and Biotechnology. 1997;70(3): 247–252. https://doi.org/10.1002/(sici)1097-4660(199711)70:3<247::aid-jctb763>3.0.co;2-8

Ioannidou S. M., Filippi K., Kookos I. K., Koutinas A., Ladakis D. Techno-economic evaluation and life cycle assessment of a biorefinery using winery waste streams for the production of succinic acid and value-added co-products. Bioresource Technology. 2022;348: 126295. https://doi.org/10.1016/j.biortech.2021.126295

Ncube A., Fiorentino G., Colella M., Ulgiati S. Upgrading wineries to biorefineries within a Circular Economy perspective: An Italian case study. Science of the Total Environment. 2021;775: 145809. https://doi.org/10.1016/j.scitotenv.2021.145809

Liu G., Wu D., Chen G., Halim R., Liu J., Deng H. Comparative study on tartaric acid production by two-chamber and three-chamber electro-electrodialysis. Separation and Purification Technology. 2021;263: 118403. https://doi.org/10.1016/j.seppur.2021.118403

El Rayess Y., Castro-Muñoz R., Cassano A. Current advances in membrane processing of wines: A comprehensive review. Trends in Food Science and Technology. 2024;147: 104453. https://doi.org/10.1016/j.tifs.2024.104453

Cabrita M. J., Garcia R., Catarino S. Recent developments in wine tartaric stabilization. Recent Advances in Wine Stabilization and Conservation Technologies. New York: Nova Publishers; 2016. Режим доступа: http://hdl.handle.net/10174/19263

Thoukis G. Chemistry of wine stabilization: a review. Washington: Chemistry of Wine Making, American Chemical Society; 1974. Режим доступа: http://jkliks.prv.pl/1.pdf

Audinos R., Roson J. P., Jouret C. Application de l’électrodialyse à l’élimination de certains composants du jus de raisin et du vin essais de laboratoire. OENO OneVin. 1979;13: 229–239. https://doi.org/10.20870/oeno-one.1979.13.3.1402

Paronetto L., Braido A. Some tests on tartrate stabilization of musts and wines by electrodialysis. Vignevini. 1977;4: 9–15. Режим доступа: https://agris.fao.org/search/en/providers/123819/records/64735a0753aa8c896307d146

Wucherpfennig K. Stabilization of grape juice and wine against tartar by means of electrodialysis. In: Proceedings of the International Symposium on Separation Processes “Membr. lon-Exch. Freeze-Cone. Food Ind.” A.P.R.I.A., Paris; 1975. 5-9.

Escudier J. L. Stabilisation tartrique des vins par membranes: resultats et developments technologiques. In: Proceedings of 11 eme Colloque Viticole et Oenologique Montpellier, France; 1997.

Moutounet M., Escudier J.-L., Saint-Pierre B. In: Les Acquisitions R´ecentes dans les Traitements Physiques du Vin (ed. B. Don`eche). Paris: Tec. et Doc., Lavoisier. 1994. Режим доступа: https://www.researchgate.net/profile/Jean-Louis-Escudier-2/publication/304496184_Determination_du_degre_d’instabilite_tartrique_DIT_principes_et_applications/links/6570e65ad21eb37cd4fa251d/Determination-du-degre-dinstabilite-tartrique-DIT-principes-et-applications?__cf_chl_tk=5z9Ff3qrXe_gnwCwDxESImpb5Zas.oJ1GrbxdZc92I8-1733311140-1.0.1.1-XOzdBDi8lnhM0ht2lVWq1SshEy93VpyvVInJYRXZ2c

Wollan D. Membrane and other techniques for the management of wine composition. Managing Wine Quality: 2021: 183–212. https://doi.org/10.1016/b978-0-08-102065-4.00032-8

Gonçalves F., Fernandes C., Cameira dos Santos P., De Pinho M. N.Wine tartaric stabilization by electrodialysis and its assessment by the saturation temperature. Journal of Food Engineering. 2003;59(2-3): 229–235. https://doi.org/10.1016/s0260-8774(02)00462-4

El Rayess Y., Achcouty S., Ghanem C., Rizk Z., Nehme N. Clarification and stabilization of wines using membrane processes. In: Recent advances in wine stabilization and conservation technologies. NY, USA, Hauppauge: Nova Science Publishers; 2016: 111–135.

Vecino X., Reig M., Gibert O., Valderrama C., Cortina J. L. Integration of monopolar and bipolar electrodialysis processes for tartaric acid recovery from residues of the winery industry. ACS Sustainable Chemistry and Engineering. 2020;8(35): 13387–13399. https://doi.org/10.1021/acssuschemeng.0c04166

Soares P. A. M. H., Geraldes V., Fernandes C., Dos Santos P. C., De Pinho M. N. Wine tartaric stabilization by electrodialysis: prediction of required deionization degree. American Journal of Enology and Viticulture. 2020;60(2): 183–188. https://doi.org/10.5344/ajev.2009.60.2.183

Ribéreau-Gayon P., Glories Y., Maujean A., Dubourdieu D. Handbook of enology: the chemistry of wine, stabilization and treatments. 2nd ed. Volume 2: Dunod, Paris. 2006.

Gómez Benítez J., Palacios Macías V. M., Szekely Gorostiaga P., Veas López R., Pérez Rodríguez L. Comparison of electrodialysis and cold treatment on an industrial scale for tartrate stabilization of sherry wines. Journal of Food Engineering. 2003;58(4): 373–378. https://doi.org/10.1016/s0260-8774(02)00421-1

Fidaleo M., Ventriglia G. Application of design of experiments to the analysis of fruit juice deacidification using electrodialysis with monopolar membranes. Foods. 2022;11(12): 1770. https://doi.org/10.3390/foods11121770

Liu G., Wu D., Chen G., Halim R., Liu J., Deng H. Comparative study on tartaric acid production by two-chamber and three-chamber electro-electrodialysis. Separation and Purification Technology. 2021;263: 118403. https://doi.org/10.1016/j.seppur.2021.118403

Zhang Y., Pinoy L., Meesschaert B., Van der Bruggen B. Separation of small organic ions from salts by ion-exchange membrane in electrodialysis. AIChE Journal. 2011;57(8): 2070–2078. https://doi.org/10.1002/aic.12433

Chandra A., Chattopadhyay S. Chain length and acidity of carboxylic acids influencing adsorption/desorption mechanism and kinetics over anion exchange membrane. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2020;589: 124395. https://doi.org/10.1016/j.colsurfa.2019.124395

Koga Y., Kondo T., Miyazaki Y., Inaba A. The effects of sulphate and tartrate ions on the molecular organization of water: towards understanding the Hofmeister series (VI). Journal of Solution Chemistry. 2012;41: 1388–1400. https://doi.org/10.1007/s10953-012-9880-x

Chandra A., Bhuvanesh E., Chattopadhyay S. A critical analysis on ion transport of organic acid mixture through an anion-exchange membrane during electrodialysis. Chemical Engineering Research and Design. 2022;178: 13–24. https://doi.org/10.1016/j.cherd.2021.11.035

Laucirica G., Pérez-Mitta G., Toimil-Molares M. E., Trautmann C., Marmisollé W. A., Azzaroni O. Amine-phosphate specific interactions within nanochannels: binding behavior and nanoconfinement effects. The Journal of Physical Chemistry C. 2019;123(47): 28997–29007. https://doi.org/10.1021/acs.jpcc.9b07977

Lide D. R. CRC handbook of chemistry and physics (Vol. 85). CRC Press; 2004.

Sugimoto Y., Ujike R., Higa M., Kakihana Y., Higa M. Power generation performance of reverse electrodialysis (RED) using various ion exchange membranes and power output prediction for a large RED stack. Membranes. 2022;12: 1141. https://doi.org/10.3390/membranes12111141

Pismenskaya N., Rybalkina O., Solonchenko K., Pasechnaya E., … Nikonenko V. How chemical nature of fixed groups of anion-exchange membranes affects the performance of electrodialysis of phosphate-containing solutions?Polymers. 2023;15(10): 2288. https://doi.org/10.3390/polym15102288

Pismenskaya N.D., Pokhidnia E.V., Pourcelly G., Nikonenko V.V. Can the electrochemical performance of heterogeneous ion-exchange membranes be better than that of homogeneous membranes? Journal of Membrane Science. 2018;566: 54–68. https://doi.org/10.1016/j.memsci.2018.08.055

Monopolar membranes. Available at: http://azotom.ru/monopolyarnye-membrany/

Chen G. Q., Wei K., Hassanvand A., Freeman B. D., Kentish S. E. Single and binary ion sorption equilibria of monovalent and divalent ions in commercial ion exchange membranes. Water Research. 2020;175: 115681. https://doi.org/10.1016/j.watres.2020.115681

Kozaderova O. A., Kim K. B., Gadzhiyevа C. S., Niftaliev S. I. Electrochemical characteristics of thin heterogeneous ion exchange membranes. Journal of Membrane Science. 2020;604: 118081. https://doi.org/10.1016/j.memsci.2020.118081

Vasilyeva V. I., Meshcheryakova E. E., Falina I. V., Kononenko N. A., Brovkina M. A., Akberova E. M. Effect of Heterogeneous Ion-Exchange Membranes Composition on Their Structure and Transport Properties. Membranes and Membrane Technologies. 2023;13(3): 163–171. https://doi.org/10.31857/S2218117223030082

Berezina N. P., Timofeev S. V., Kononenko N. A. Effect of conditioning techniques of perfluorinated sulphocationic membranes on their hydrophylic and electrotransport properties. Journal of Membrane Science. 2002;209(2): 509–518. https://doi.org/10.1016/S0376-7388(02)00368-X

Ponomar M., Krasnyuk E., Butylskii D., … Pismenskaya N. Sessile drop method: critical analysis and optimization for measuring the contact angle of an ionexchange membrane surface. Membranes. 2022;12: 765. https://doi.org/10.3390/membranes12080765

Rybalkina O. A., Sharafan M. V., Nikonenko V. V., Pismenskaya N. D. Two mechanisms of H+/OH− ion generation in anion-exchange membrane systems with polybasic acid salt solutions. Journal of Membrane Science. 2022; 651: 120449. https://doi.org/10.1016/j.memsci.2022.120449

Maletzki F., Rösler H. W., Staude E. Ion transfer across electrodialysis membranes in the overlimiting current range: stationary voltage current characteristics and current noise power spectra under different conditions of free convection. Journal of Membrane Science. 1992;71(1-2): 105–116. https://doi.org/10.1016/0376-7388(92)85010-G

Lévêque M. A. The laws of heat transmission by convection. Les Annales des Mines: Memoires. 1928;12(13). 201–299.

Rybalkina O. A., Tsygurina K. A., Sarapulova V.V., Mareev S.A., Nikonenko V.V., Pismenskaya N. D. Evolution of current-voltage characteristics and surface morphology of homogeneous anion-exchange membranes during the electrodialysis desalination of alkali metal salt solutions. Membranes and Membrane Technologies. 2019;9(2): 131–145. https://doi.org/10.1134/S2218117219020093

Pismenskaya N., Sarapulova V., Nevakshenova E., Kononenko N., Fomenko M., Nikonenko V. Concentration dependencies of diffusion permeability of anion-exchange membranes in sodium hydrogen carbonate, monosodium phosphate, and potassium hydrogen tartrate solutions. Membranes. 2019;9(12): 170. https://doi.org/10.3390/membranes9120170

Zabolotskii V. I., Chermit R. K., Sharafan M. V. Mass transfer mechanism and chemical stability of strongly basic anion-exchange membranes under overlimiting current conditions. Russian Journal of Electrochemistry. 2014;50(1): 45. https://doi.org/10.7868/S0424857014010113

Quéré D. Rough ideas on wetting. Physica A: Statistical Mechanics and its Applications. 20022;313(1-2): 32–46. https://doi.org/10.1016/s0378-4371(02)01033-6

Dukhin S. S. Electrokinetic phenomena of the second kind and their applications. Advances in Colloid and Interface Science. 1991;35: 173–196. https://doi.org/10.1016/0001-8686(91)80022-C

Mishchuk N. A. Concentration polarization of interface and non-linear electrokinetic phenomena. Advances in Colloid and Interface Science. 2010;160(1-2): 16–39. https://doi.org/10.1016/j.cis.2010.07.001

Rubinstein I., Zaltzman B. Electro-osmotically induced convection at a permselective membrane. Physical Review E. 2000;62(2): 2238. https://doi.org/10.1103/PhysRevE.62.22381

Zaltzman B., Rubinstein I. Electro-osmotic slip and electroconvective instability. Journal of Fluid Mechanics. 2007; 579: 173–226. https://doi.org/10.1017/S0022112007004880

Helfferich F. G. Ion exchange. Courier Corporation; 1995.

Zabolotskii V.I., Lebedev K.A., Sheldeshov N.V. Iontransfer across a membrane in the presence of a preceding slow homogeneous chemical reaction in the diffusion layer. Russian Journal of Electrochemistry. 2017;53(9): 1083–1097. https://doi.org/10.7868/S0424857017090079

Sharafan M. V., Gorobchenko A.D., Nikonenko V.V. Effect of acetic acid dissociation reaction on the limiting current density in a system with a rotating membrane disk. Membranes and Membrane Technologies, 2024;6(4): 290–297. In press.

Martí-Calatayud M. C., Ruiz-García M., Pérez-Herranz V. On the selective transport of mixtures of organic and inorganic anions through anion-exchange membranes: A case study about the separation of nitrates and citric acid by electrodialysis. Separation and Purification Technology. 2025; 354: 128951. https://doi.org/10.1016/j.seppur.2024.128951

Anion exchange membranes. Available at: https://www.astom-corp.jp/en/product/10.html

Published
2025-09-25
How to Cite
Yurchenko, O. A., Solonchenko, K. V., & Pismenskaya, N. D. (2025). Coupled phenomena of concentration polarization in systems with anion-exchange membranes before and after their participation in electrodialysis of tartrate-containing solutions. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 27(3), 464-477. https://doi.org/10.17308/kcmf.2025.27/13023
Section
Original articles