Azeotropism of clathrate hydrates: a brief overview

  • Nikita A. Shostak Kuban State Technological University, 2 Moskovskaya st., Krasnodar 350072, Russian Federation; Kuban State University, 149 Stavropolskaya st., Krasnodar 350040, Russian Federation; Kuban State Medical University, 4 Mitrofana Sedina st., Krasnodar 350063, Russian Federation https://orcid.org/0000-0001-6220-9633
Keywords: Azeotropism, Azeotropic behavior, Azeotropic mixture, Clathrate hydrates, Hydrate-forming

Abstract

Objectives: The objective of this work was to provide a review of the specific features of azeotropism manifestation in hydrate-forming mixtures. The physical basis of azeotropic behavior in clathrate hydrates and its relation to molecular structures and intermolecular forces are analyzed. The influence of hydrate system stability on azeotropic properties is considered, along with the effects of individual component characteristics such as molecular size and structure on azeotropy.

Experimental: Experimental methods for identifying azeotropy in clathrate hydrates are reviewed. Computational approaches to determining the azeotropic point are analyzed, and theoretical predictions are compared with experimental data for known azeotropic hydrates. A concise overview of hydrate-forming mixtures exhibiting azeotropic behavior is also presented.

Conclusions: Possible applications of azeotropic behavior in hydrate systems are discussed, highlighting its significant potential in practical and industrial contexts.

Downloads

Download data is not yet available.

Author Biography

Nikita A. Shostak, Kuban State Technological University, 2 Moskovskaya st., Krasnodar 350072, Russian Federation; Kuban State University, 149 Stavropolskaya st., Krasnodar 350040, Russian Federation; Kuban State Medical University, 4 Mitrofana Sedina st., Krasnodar 350063, Russian Federation

Cand. Sci. (Tech.), Associate Professor, Research Engineer, Kuban State University, Associate Professor of the Department of Oil and Gas Engineering named after Professor G. T. Vartumyan, Kuban State Technological University; Associate Professor of the Department of Normal Physiology, Kuban State Medical University of the Ministry of Health of the Russian Federation (Krasnodar, Russian Federation)

References

Khazanova N. E. Systems with azeotropism at high pressures*. Moscow: Khimiya Publ.; 1978. 216 p. (in Russ.)

Horsley L. H. Table of azeotropes and nonazeotropes. Analytical Chemistry. 1949;21(7): 831–873. https://doi.org/10.1021/ac60031a022

Swietoslawski W. Azeotropy and Polyazeotropy. N.-Y.: Macmillan Company; 1963. 226 p.

Malesinski W. Azeotropy and other theoretical problems of vapour-liquid equilibrium. Warszawa: Polish cientific Publishers; 1965. 222 p.

Prausnitz J. M. Molecular thermodynamics of fluidphase equilibria. Canada: Prentice-Hall; 1969. 523 p.

Azeotropic mixtures: Handbook* / S. K. Ogorodnikov, T. M. Lesteva, V. B. Kogan; V. B. Kogan (ed.). Leningrad: Khimiya Publ., Leningrad Department; 1971. 848 p. (in Russ.)

Konovalov D. P. On the vapor elasticity of solutions*. St. Petersburg: 1909. 74 p. (in Russ.)

Kostyanovsky R. G. Catenates and clathrates*. Moscow: Znanie Publ.; 1966. 32 p. (in Russ.)

Hilmen E.-K. Separation of Azeotropic Mixtures: Tools for Analysis and Studies on Batch Distillation Operation: A Thesis Submitted for the Degree of Dr. Ing. 2000. 288 p. Available at: https://skoge.folk.ntnu.no/publications/thesis/2000_hilmen/Thesis_Hilmen.pdf

Vrevsky M. S. Works on the theory of solutions*. Moscow-Leningrad: 1953. 334 p. (in Russ.)

Kogan V. B. Heterogeneous equilibria*. Leningrad: Khimiya Publ.; 1968. 431 p. (in Russ.)

Zhukhovitsky A. A., Shvartsman L. A. Physical chemistry. 2nd ed. Moscow: Metalurgizdat; 1968. 676 p. (in Russ.)

Кipling J. J. Adsorbtion from solutions of nоn electrolytes. London-New York: Acad. Press; 1965. 264 p.

Shostak N. A. Modeling of formation and dissociation of hydrates during development and operation of oil and gas fields*. Cand. tech. sci. diss. Krasnodar: 2015. 118 p. (in Russ.). Available at: https://kubstu.ru/data/fdlist/FDD0427.pdf?6zm5bh

Platteeuw J. C., van der Waals J. H. Thermodynamic properties of gas hydrates II: Phase equilibria in the system H2S-C3H8-H2O at −3 °C. Recueil des Travaux Chimiques des Pays-Bas. 1959;78(2): 126–133. https://doi.org/10.1002/recl.19590780208

Byk S. Sh., Makogon Yu. F., Fomina V. I. Gas hydrates*. Moscow: Nedra Publ.; 1980. 296 p. (in Russ.)

Dyadin Yu. A., Zhurko F. V., Bondaryuk I. V. Clathrate hydrates at high pressures. Structure and stability*. Novosibirsk: INH Publ.; 1987. 48 p. (in Russ.)

Koryakina V. V., Semenov M. E., Shitz E. Yu., Portnyagin A. S. Research of structure of the synthetic hydrates of ethane, ethane received in installations of the closed type. International Research Journal. 2016;7(49): 24–29. https://doi.org/10.18454/IRJ.2016.49.175

Deaton W. M., Frost E. M. Gas hydrates and their relation to the operation of natural-gas pipe lines. American Gas Association; 1949. 101 p.

Snell L. E., Otto F. D., Robinson D. B. Hydrates in systems containing methane, ethylene, propylene, and water. AIChE Journal. 1961;7(3): 482–485. https://doi.org/10.1002/aic.690070328

Verma V. K. Gas Hydrates from Liquid Hydrocarbon–Water Systems. Ph.D. Thesis. University of Michigan, University Microfilms; 1974. No. 75–10,324, Ann Arbor, MI. https://dx.doi.org/10.7302/10832

van der Waals J. H., Platteeuw J. C. Clathrate compounds. Advances in Chemical Physics. 1958; 1–57. https://doi.org/10.1002/9780470143483.ch1

Holder G. D., Grigoriou G. C. Hydrate dissociation pressures of (methane + ethane + water) existence of a locus of minimum pressures. The Journal of Chemical Thermodynamics. 1980: 1093–1104. https://doi.org/10.1016/0021-9614(80)90166-4

Thakore J. L., Holder G. D. Solid-vapor azeotropes in hydrate-forming systems. Industrial and Engineering Chemistry Research. 1987;26(3): 462–469. https://doi.org/10.1021/ie00063a011

Maekawa T. Phase equilibria for hydrate formation from binary mixtures of ethane, propane and noble gases. Fluid Phase Equilibria. 2006;243: 115–120. https://doi.org/10.1016/J.FLUID.2006.02.015

Kim E., Gyeol K., Yongwon S. Phase equilibria and azeotropic behavior of C2F6 + N2 gas hydrates. The Journal of Chemical Thermodynamics. 2017;117: 43-47. https://doi.org/10.1016/j.jct.2017.06.016

Lim S. G., Jiyeong J., Jong-Won L., … Ji-Ho Y. Azeotropic clathrate: compelling similarity of CO2 and N2O uptake in an organic crystalline host. Chemical Engineering Journal. 2021; 427: 131560. https://doi.org/10.1016/j.cej.2021.131560

Kiva V. N., Kozlova L. V., Krivodub V. G., Pariychuk L. V., Serafimov L. A., Sushko R. Sh. Method for detecting azeotropy in mixtures*. USSR Patent: No. 250538. Publ. December 8, 1969. (in Russ.). Available at: https://rusneb.ru/catalog/000224_000128_0000250538_19690812_A1_SU/

Kvamme B., Ole K. F. Polar guest-molecules in natural gas hydrates. Effects of polarity and guest -uestinteractions on the Langmuir-constants. Fluid Phase Equilibria. 1993;83: 427–435. https://doi.org/10.1016/0378-3812(93)87047-5

Zaporozhets E. P., Shostak N. A. Calculation of the distribution of components in the formed hydrate*. Science and Technology in the Gas Industry. 2019; 2 (78): 21–27. (in Russ.). Available at: https://elibrary.ru/item.asp?edn=krydun

Landgrebe M. K. B., Nkazi D. Toward a robust, universal predictor of gas hydrate equilibria by means of a deep learning regression. ACS Omega. 2019;4(27): 22399–22417. https://doi.org/10.1021/acsomega.9b02961

Hu X., Sun L., Yuan C., … Song Y. Principle and feasibility study of proposed hydrate-based cyclopentane purification technology. Energies. 2023;16(12): 4681. https://doi.org/10.3390/en16124681

Avaji S., Javanmardi J., Mohammadi A. H., Rahmanian N., De-Gald V. The Kihara potential function parameters of methane, ethane, propane, and i-butane: the effects on clathrate hydrate structure determination. Fluid Phase Equilibria. 2023;567: 113716. https://doi.org/10.1016/j.fluid.2022.113716

Lim S. G., Jang J., Lee J.-W., … Yoon J.-H. Azeotropic clathrate: compelling similarity of CO2 and N2O uptake in an organic crystalline host. Chemical Engineering Journal. 2022;427: 131560. https://doi.org/10.1016/j.cej.2021.131560

Go W., Lee D., Seo Y. Synergistic inhibition effects of hydrophilic monomeric substances on CH4 hydrate as revealed by experimental and computational approaches. Chemical Engineering Journal. 2021;426: 130794. https://doi.org/10.1016/j.cej.2021.130794

Published
2025-12-25
How to Cite
Shostak, N. A. (2025). Azeotropism of clathrate hydrates: a brief overview. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 27(4), 547-557. https://doi.org/10.17308/kcmf.2025.27/13253
Section
Review