Structural, optical and magnetic properties of CoFe2–xEuxO4 nanoparticles prepared by simple co-precipitation route
Abstract
Objectives: Nanoparticles of CoFe2–xEuxO4 (x = 0, 0.025, 0.05, 0.075, and 0.1) were successfully synthesized by simple coprecipitation method.
Experimental: Field emission scanning electron microscopy (FE-SEM) images revealed europium-doped cobalt spinel ferrite nanoparticles formed after calcination of the precursor at 900 °C for 1 h, with sizes of approximately 20–40 nm. Energy dispersive X-ray spectra (EDXS) confirmed the presence of Co, Fe, Eu, and O elements with no evident of impurities. Results calculated from powder X-ray diffraction (PXRD) data show that the average crystallite size and lattice parameters decrease with increasing europium content.
Conclusions: The doping of Eu3+ ions in the cobalt ferrite structure affects the optical and magnetic properties of the substrate material. In this case, the values of band gap energy (Eg), coercivity (Hc) and remanent magnetization (Mr) increase with increasing concentration of Eu3+ ion, while optical absorption and saturation magnetization exhibit an opposite trend. The excellent optical and magnetic properties of un-doped and Eu-doped CoFe2O4 nanoparticles suggest great potential for applications related to optics and magnetism.
Downloads
References
Kebede K. K., Msagati T. A. M., Mamba B. B. Ferrite nanoparticles: synthesis, characterization and applications in electronic device. Materials Science and Engineering: B. 2017;215: 37–55. https://doi.org/10.1016/j.mseb.2016.11.002
Tomina E. V., Sladkopevtsev B. V., Nguyen A. T., Vo Q. M. Nanocrystalline ferrites with spinel structure for various functional applications. Inorganic Materials. 2023;59: 1363–1385. https://doi.org/10.1134/S0020168523130010
Zhang F., Wei C., Wu K., Zhou H., Hu Y., Preis S. Mechanistic evaluation of ferrite AFe2 O4 (A = Co, Ni, Cu, and Zn) catalytic performance in oxalic acid ozonation. Applied Catalysis A: Genenal. 2017;547: 60–68. https://doi.org/10.1016/j.apcata.2017.08.025
Ivashenko D. V., Urbanovich D. A., Palyn I. Y., Bushinsky M. V., Trukhanov A. V., Pankov V. V. Synthesis dispersed powders of CoZn ferrites for microwave absorption. Condensed Matter and Interphases. 2023;25: 37–46. https://doi.org/10.17308/kcmf.2023.25/10646
Kefeni K. K., Mamba B. B. Photocatalytic application of spinel ferrite nanoparticles and nanocomposites in wastewater treatment: review. Sustainable Materials and Technology. 2020;23: e00140. https://doi.org/10.1016/j.susmat.2019.e00140
Wang L., Li J., Wang Y., Zhao L., Jiang Q. Adsorption capability for congo red on nanocrystalline MFe2O4 (M = Mn, Fe, Co, Ni) spinel ferrites. Chemical Engineering Journal. 2012;181: 72–79. https://doi.org/10.1016/j.cej.2011.10.088
Jain R., Kumar S., Meena S. K. Precipitating agent (NaOH and NH4OH) dependent magnetic properties of cobalt ferrite nanoparticles. AIP Advances. 2022;12: 095109. https://doi.org/10.1063/5.0098157
Ngo T. P. H., Le T. K. Polyethylene glycol-assisted solgel synthesis of magnetic CoFe2O4 powders as photoenton catalysts in the presence of oxalic acid. Journal of Sol-Gel Science and Technology. 2018;88: 211–219. https://doi.org/10.1007/s10971-018-4783-y
Nguyen A. T., Nguyen T. D., Mittova V. O., Berezhnaya M. V., Mittova I. Ya. Phase composition and magnetic properties of Ni1–xCoxFe2O4 nanocrystals with spinel structure synthesized by co-precipitation method. Nanosystems: Physics, Chemistry, Mathematics. 2017;8: 371–377. https://doi.org/10.17586/2220-8054-2017-8-3-371-377
Maaz K., Khalid W., Mumtaz A., Hasanain S. K., Liu J., Duan J. L. Magnetic characterization of Co1-xNixFe2O4 nanoparticles prepared by co-precipitation route. Physical E: Low-dimensional Systems and Nanostructures. 2009;41: 593–599. https://doi.org/10.1016/j.physe.2008.10.009
Alves T. E. P., Pessoni H. V. S., Franco Jr. A. The effect of Y3+ substitution on the structural, optical band-gap, and magnetic properties of cobalt ferrite nanoparticles. Physical Chemistry Chemical Physics. 2017;25: 16395–16405. https://doi.org/10.1039/C7CP02167D
Tomina E. V., Kurkin N. A., Doroshenko A. V. Synthesis of nanoparticulate cobalt ferrite and its catalytic properties for Fenton-like processes. Inorganic Materials. 2022; 58: 727–732. https://doi.org/10.31857/S0002337X22070132
Thomas J., Thomas N., Girgsdies F., M. Beherns, … Sebastiane V. Synthesis of cobalt ferrite nanoparticles by constant pH co-precipitation and their high catalytic activity in CO oxidation. New Journal of Chemistry. 2017;41: 7356–7363. https://doi.org/10.1039/c7nj00558j
Sumathi S., Lakshmipriya V. Structural, magnetic, electrical and catalytic activity of copper and bismuth cosubstituted cobalt ferrite nanoparticles. Journal of Materials Science: Materials in Electronics. 2017;28: 2795–2802. https://doi.org/10.1007/s10854-016-5860-z
Nguyen T. T. L., Nguyen T. H. L., Nguyen T. T. H., … Tran T. V. CoFe2O4 nanomaterials: effect of annealing temperature on characterization, magnetic, photocatalytic, and photo-Fenton properties. Processes. 2019;7: 885. https://doi.org/10.3390/pr7120885
Petrova E., Kotsikau D., Pankov V., Fahmi A. Influence of synthesis methods on structural and magnetic characteristics of Mg–Zn-ferrite nanopowders. Journal of Magnetism and Magnetic Materials. 2019;473: 85–91. https://doi.org/10.1016/j.jmmm.2018.09.128
Hoang B. K., Mittova V. O., Nguyen A. T., Pham T. H. D. Structural and magnetic properties of Ho-doped CuFe2O4 nanoparticles prepared by a simple co-precipitation method. Condensed Matter and Interphases. 2022;24: 109–115. https://doi.org/10.17308/kcmf.2022.24/9061
Patankar K. K., Jadhav P. S., Devkar J., Ghone D. M., Kaushik S. D. Synthesis and characterization of CoFe2–xYxO4 (x = 0.05 – 0.2) by auto combustion method. AIP Conference Proceedings. 2017;1832: 050172. https://doi.org/10.1063/1.4980405
Gingasu D., Mindru I., Ianculescu A.-C., ... Chifiriuc M. C. Chifiriuc, soft chemistry synthesis and characterization of CoFe1.8Re0.2O4 (R = Tb, Er) ferrite. Magnetochemistry. 2022; 8: 1–15. https://doi.org/10.3390/magnetochemistry8020012
Zhao X., Wang W., Zhang Y., Wu S., Li F., Liu P. Synthesis and characterization of gadolinium doped cobalt ferrite nanoparticles with enhanced adsorption capability for Congo Red. Chemical Engineering Journal. 2014;250: 164–174. https://doi.org/10.1016/j.cej.2014.03.113
Boddolla S., Ravinder D. Eu3+ doped CoFe2O4 nanoparticles with XRD and FTIR analysis. Journal for Research in Applied Sciences and Biotechnology. 2024;3: 135–138. https://doi.org/10.55544/jrasb.3.2.23
Franco A. Jr., Pessoni H. V. S., Alves T. E. P. Enhanced dielectric permittivity on yttrium doped cobalt ferrite nanoparticles. Materials Letters. 2017;208: 115–117. https://doi.org/10.1016/j.matlet.2017.04.101
Basak M., Rahman M. L., Ahmed M. F., Biswas B., Sharmin N. Calcination effect on structural, morphology and magnetic properties of nano-sized CoFe2O4 developed by a simple co-precipitation technique. Materials Chemistry and Physics. 2021;264: 124442. https://doi.org/10.1016/j.matchemphys.2021.124442
Nguyen A. T., Nguyen T. T., Mittova V. O., ... Bui X. V. Structural, thermal, and magnetic properties of rthoferrite EuFeO3 nanoparticles prepared by a simple co-precipitation method. Journal of Materials Science: Materials in Electronic. 2023;34: 1370. https://doi.org/10.1007/s10854-023-10779-y
Nguyen A. T., Cam T. S., Mittova V. O., ... Bui X. V. Influence of synthesis conditions on the crystal structure, optical and magnetic properties of o-EuFeO3 nanoparticles. Coatings. 2023;13: 1082. https://doi.org/10.3390/coatings13061082
Tran D. T., Nguyen H. C. H., Le T. T. T., Nguyen A. T. Effect of annealing temperature and precipitation agent on the structure, optical and magnetic characteristics of dysprosium orthoferrite nanoparticles. Materials Today Commnunications. 2024;40: 109733. https://doi.org/10.1016/j.mtcomm.2024.109733
Housecroft C. E.; Sharpe A. G. Inorganic Chemistry, 2nd ed. NJ, USA: Pearson, Prentice Hall, Upper Saddle River; 2005. 950 p.
Tien N. A., Mittova V. O., Sladkopevtsev B. V., ... Vuong B. X. Structural, optical and magnetic properties of Y-doped NiFe2O4 nanoparticles prepared by simple coprecipitation method. Solid State Sciences. 2023;138: 107149. https://doi.org/10.1016/j.solidstatesciences.2023.107149
Dixit G., Singh J. P., Srivastava R. C., Agrawal H. M. Magnetic resonance study of Ce and Gd doped NiFe2O4 nanoparticles. Journal of Magnetism and Magnetic Materials. 2012; 324: 479–483. https://doi.org/10.1016/j.jmmm.2011.08.027
Mohamed W. S., Abu-Dief A. M. Impact of rare earth europium (Re-Eu3+) ions substitution on microstructural, optical and magnetic properties of CoFe2–xEuxO4 nanosystems. Ceramics International. 2020;46: 16196–16209. https://doi.org/10.1016/j.ceramint.2020.03.175
Almessiere M. A., Slimani Y., Korkmaz A. D., … Ozcelik B. Sonochemical synthesis of Eu3+ substituted CoFe2O4 nanoparticles and their structural, optical and magnetic properties. Ultarsonics Sonochemistry. 2019;58: 104621. https://doi.org/10.1016/j.ultsonch.2019.104621
Chung N . T. K ., Tien N. A. Structural, optical and magnetic properties of Y-doped CoFe2O4 nanoparticles prepared by a simple co-precipitation method. Journal of Materials Science: Materials in Electronic. 2023;34: 448. https://doi.org/10.1007/s10854-023-09914-6
Ahmadi H., Shokrollah N., Aghaei S., ... Tightiz N. Nanocrystalline CuFe2–xSmxO4: synthesis, characterization and its photocatalytic degradation of methyl orange. Journal of Materials Science: Materials in Electronic. 2016;27: 4689–4693. https://doi.org/10.1007/s10854-016-4347-2
Cullity B. D., Graham C. D. Introduction to Magnetic Materials, 2nd ed. Canada: John Wiley & Sons, Inc., Publication; 2009. http://doi.org/10.1002/9780470386323
Moriya Y. New mechanism of anisotropic superexchange interaction. Physical Review Letters. 1960;4: 228–230. https://doi.org/10.1103/PhysRevLett.4.228
Copyright (c) 2025 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases

This work is licensed under a Creative Commons Attribution 4.0 International License.








