Phase equilibria and some properties of solid solutions of PbGa2S4–SmGa2S4 and PbGa2Se4–SmGa2Se4 systems
Abstract
Objectives: In connection with the transition to green energy, the search for, synthesis of, and investigation into alternative energy sources and the materials required for them are of great importance. One of the methods for obtaining such promising materials is the study of phase diagrams between isostructural compounds. In this regard, phase equilibria in the PbGa2S4–SmGa2S4 and PbGa2Se4–SmGa2Se4 systems were investigated using physicochemical analysis methods (DTA, XRD, measurements of microhardness and density), and their phase diagrams were constructed.
Conclusions: It has been established that the specified systems are quasi-binary and are characterized by the formation of continuous substitution-type solid-solution areas. The solid solutions Pb1-xSmxGa2S4 and Pb1-xSmxGa2Se4 crystallize in the orthorhombic crystal system and belong to the EuGa2S4 structural type. Their unit-cell parameters vary within the following ranges: Pb1-xSmxGa2S4 a = 20.745–20.706 Å; b = 20.464–20.380 Å; c = 12.236–12.156 Å; Pb1-xSmxGa2Se4 a = 21.722–21.782 Å; b = 21.202–21.350 Å; c = 12.3047–12.390 Å; Space group: Fddd, Z = 32. Several physicochemical properties of the Pb1-xSmxGa2S4 and Pb1-xSmxGa2Se4 solid solutions have been investigated.
Downloads
References
Rustamov P. G., Aliev O. M., Eynullaev A. V., Aliev I. P. Chalcolantanates of rare elements*. Moscow: Nauka Publ., 1989, 284 p. (in Russ.)
Mammadov F. M., Babanly D. M., Amiraslanov I. R., Tagiev D. B., Babanly M. B. System FeS– Ga2S3–In2S3. Russian Journal of Inorganic Chemistry. 2021;66(10): 1533. https://doi.org/10.1134/S0036023621100090
Amiraslanova A. J., Babanly K. N., Imamaliyeva S. Z, Yusibov Y. A., Babanly M. B. Phase equilibria in the Ag8SiSe6-Ag8SiTe6 system and characterization of solid solutions Ag8SiSe1-xTex. Applied Chemical Engineering. 2023;6(2): 1. https://doi.org/10.24294/ace.v6i2.2162
Mammadov F. M., Imamaliyeva S. Z., Jafarov Ya. I., Bakhtiyarly I. B., Babanly M. B. Phase equilibria in the MnTе–MnGa2Te4–MnIn2Te4 system. Condensed Matter and Interphases. 2022;24(3): 335. https://doi.org/10.17308/kcmf.2022.24/9856
Kondrotas R., Colina M., Guc M., … Saucedo E. Towards In-reduced photovoltaic absorbers: evaluation of zincblende CuInSe2–ZnSe solid solution. Solar Energy Materials and Solar Cells. 2017;160: 26. https://doi.org/10.1016/j.solmat.2016.10.023
Skoug E. J., Cain J. D., Morelli D. T. High thermoelectric figure of merit the Cu3SbS4–Cu3SbSe4 solid solution. Appled Physics Letters. 2011;98(26): 261911. https://doi.org/10.1063/1.3605246
Singh U. P., Patra S. P. Progress in polycrystalline thinfilm Cu(In,Ga)Se2 Solar Cells. Internationals Journal of Photoenergy. 2010; 201(1): 1. https://doi.org/10.1155/2010/468147
Navratil J., Kucek V., Plechacek T. Thermoelectric properties of Cu2HgSnSe4–Cu2HgSnTe4 solid solution. Journals Electronic Materials. 2014;43(10): 3719. https://doi.org/10.1007/s11664-014-3075-8
Chand S., Sharma P. Synthesis and characterization of Ag-chalcogenide nano particles for possible applications in photovоltaics. Materials Science-Poland. 2018;36(3): 375. https://doi.org/10.2478/msp-2018-0064
Orokov M. M., Klimovskikh I. I., Bentmann H., … Chulkov E. V. Prediction and obser vation of an antiferromagnetic topological insulator. Nature. 2019;576: 416. https://doi.org/10.1038/s41586-019-1840-9
Shevelkov A. V. Chemical aspects of the thermoelectric materials engineering. Russian Chemical Review. 008;77(1): 19. https://doi.org/10.1070/RC2008v077n01ABEH003746
Wang Y., Zhao Y., Ding X., Qiao L. Recent advances in the electrochemistry of layered post transition metal chalcogenids nanomaterials for hydrogen evulation reaction. Journal of Energy Chemistry. 2021;60(1): 451. https://doi.org/10.1016/j.jechem.2021.01.021
Badikov D., Badikov V., Doroshenko M., Fintisova A., Shevyrdyaeva G. Low-phonon lead thiogallate crystal as a matrix for mid-IR lasers. Photonics. 2008;4: 24. Available at: https://www.photonics.su/files/article_pdf/2/article_2631_62.pdf
Marshall J. M., Dimova-Malinovska D. (Eds.). Photovoltaic and photoactive materials, propertics, technology and applications. NATO Science Series II: Mathematics, Physics and Chemistry (NAII, volume 80). 2002. https://doi.org/10.1007/978-94-010-0632-3
Chalcogenides advances in research and applications / P. Woodrow (Ed.). Nova Science Publ.; 2018, 111 p.
Golovey V. M., Obolonchik V. A., Golovey M. I. The Ga2S3–PbS system. Russian Journal of Inorganic Chemistry. 1981:26(7): 1970–1978.
Chilоut A., Mazurier A., Guittaed M. Systeme Ga2S3-PbS. Diagramma de phase, etude cristallographique.
Materials Researsh Bulletin. 1979;14(9): 1119. https://doi.org/10.1016/0025-5408(79)90205-8
Eholie R., Kom I. K., Flahaut J. Diagram de phase PbS–Ga2S3 system. Acad. Sci. Paris, ser. C. 1969;268: 700-702.
Klee N., Schofer H. Zur kennznis von PbAl2Se4 and PbGa2Se4. Materials Researsh Bulletin. 1980;15(7): 1033. https://doi.org/10.1016/0025-5408(80)90230-5
Sosovska S. M., Olekseyuk I. D., Parasyuk O. V. The CdSe–Ga2Se3–PbSe system. Journal of Alloys and pompounds. 2008;453: 115. https://doi.org/10.1016/j.jallcom.2006.11.051
Bellagra H. K., Kogut T. M., Piskach V. V. Component interaction in the quasi-ternary system PbSe-Ga2Se3-GeSe2. Journal of Phase Equilibria and Diffusion. 2022;44(1): 3. https://doi.org/10.1007/s11669-022-01017-9
Chen W.-F., Liu B.-W., Jiang X.-M., Guo G.-C. Infrared nonlinear optical performances of a new sulfide β-PbGa2S4. Journal of Alloys and Compounds. 2022;905: 164090. https://doi.org/10.1016/j.jallcom.2022.164090
Aliyev O. M., Akhmedova N. R. Physicochemical and photoelectric properties of crystals of samarium tetrathioindates and tetrathiogallates and solid solutions based on them. Azerbaijan Chemical Journal. 2010;3: 67.
Aliev O. M., Alieva O. A., Eynullaev A. V. Triple system Sm–Ga–S. Journal of Inorganic Chemistry. 1993;38(8): 1418.
Aliev O. M., Alieva O. A., Aliev I. P. Synthesis and physico-chemical properties of samarium chalcogallates and chalcoindates. ChemInform. 1993;24(48): https://doi.org/10.1002/chin.199348031
Asatryan G. R., Badikov V. V., Kramushchenko D. D., Khramtsov V. A. Electron paramagnetic of Dy3+ ions in lead thiogallate single crystals. Physics Solid State. 2012;54(6): 1245. https://doi.org/10.1134/S1063783412060042
Kamenshchikov V. N., Suslikov L. M. Calculotion of the optical properties of PbGa2S4 crystal. Optics and Spectroscopy. 2014;116(4): 564. https://doi.org/10.1134/S0030400X14040134
Badikov V., Badikov D., Doroshenko M., Panyutin V., Chizhikov V. I., Shevyrdyaeva G. Optical properties of lead thiogallate. Optical Materials. 2008;31(2): 184. https://doi.org/10.1016/j.optmat.2008.03.001
Basiev T. T., Doroshenko M. E., Osiko V. V., Shevyrdyaeva G. S. Qualitative improvement in the lasing performance of PbGa2S4: Dy3+ crystals through Na+ doping. Quantum Electronics. 2010;40(7): 596–598. https://doi.org/10.1070/QE2010v040n07ABEH014351
Anosov V. Ya., Ozerova M. I., Fialkov Yu. Ya. Fundamentals of physical and chemical analysis. Moscow: Nauka Publishing House; 1976. p. 114–116. (in Russ.) Available at: https://www.geokniga.org/bookfiles/geoknigaosnovyfiziko-himicheskogoanaliza.pdf
Copyright (c) 2025 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases

This work is licensed under a Creative Commons Attribution 4.0 International License.








