Experimental study of phase equilibria in the Cu2SnSe3-Cu3SbSe4-Se ternary system
Abstract
Objectives: Copper-tin and copper-antimony chalcogenides are highly desirable for the creation of novel, affordable, and ecologically friendly thermoelectric materials. Due to the potential for improving their thermoelectric performance through different cationic and anionic substitutions, these compounds have recently attracted increased attention. The aim of the work was to establish the nature of the physicochemical interaction in the Cu2SnSe3-Cu3SbSe4-Se compositions region of the Cu-Sn-Sb-Se quaternary system by experimentally studying phase equilibria.
Experimental: Elemental components of high purity (≥ 99.999 %) from EVOCHEM Advanced Materials GmbH (Germany) were used for the synthesis of the ternary compounds. The synthesis was carried out in evacuated (~10-2 Pa) quartz ampoules at temperatures 50 °C above the melting points of the ternary compounds. Phase equilibria in the Cu2SnSe3*Cu3SbSe4-Se system were experimentally studied using differential thermal analysis (NETZSCH 404 F1 Pegasus system) and X-ray diffraction (diffractometer Bruker D2 PHASER). This paper presents the T-x diagram of the Cu2SnSe3-Cu3SbSe4 boundary system, the isothermal section at 300 K, the liquidus surface projection, as well as three polythermal sections of the phase diagram. The primary crystallization fields of the phases and the types and coordinates of non- and monovariant equilibria are also determined.
Conclusions: The Cu2SnSe3-Cu3SbSe4 system has been established to be a quasi-binary eutectic system. Eutectic equilibrium is established at 68 mol % Cu3SbSe4 and 727 K. The liquidus surface of the studied system consists of two wide regions of primary crystallization of the Cu2SnSe3 and Cu3SbSe4 phases and one degenerate region near the selenium corner of the concentration triangle. A wide immiscibility area of two liquid phases is observed in the system, which has the form of a continuous solid solutions between the corresponding regions of the Cu2SnSe3-Se and Cu3SbSe4-Se boundary systems.
Downloads
References
Liu W., Hu J., Zhang S., Deng M., Han C.-G., Liu Y. New trends, strategies and opportunities in thermoelectric materials: a perspective. Materials Today Physics. 2017;1: 50–60. https://doi.org/10.1016/j.mtphys.2017.06.001
He J., Tritt T. M. Advances in thermoelectric materials research: looking back and moving forward. Science. 2017; 357(6358). https://doi.org/10.1126/science.aak9997
Jia N., Cao J., Tan X. Y., ... Suwardi A.Thermoelectric materials and transport physics. Materials Today Physics. 2021; 21: 100519. https://doi.org/10.1016/j.mtphys.2021.100519
Mukherjee M., Srivastava A., Singh A. K. Recent advances in designing thermoelectric materials Journal of Materials Chemistry C. 2022;10: 12524–12555. https://doi.org/10.1039/D2TC02448A
Du Y., Xu J., Paul B., Eklund P. Flexible thermoelectric materials and devices. Applied Materials Today. 2018;12: 366–388. https://doi.org/10.1016/j.apmt.2018.07.004
Qiu P., Shi X., Chen L. Cu-based thermoelectric materials. Energy Storage Materials. 2016;3: 85-97. https://doi.org/10.1016/j.ensm.2016.01.009
Mikuła A., Mars K., Nieroda P., Rutkowski P. Copper chalcogenide-copper tetrahedrite composites – a new concept for stable thermoelectric materials dased on the chalcogenide system. Materials. 2021;14(10): 2635. https://doi.org/10.3390/ma14102635
Mulla R., Rabinal M. H. K. Copper sulfides: earthabundant and low-cost thermoelectric materials. Energy Technology. 2019;7(7): 1800850. https://doi.org/10.1002/ente.201800850
Jaldurgam F. F., Ahmad Z., Touati F., ... Altahtamouni T. Enhancement of thermoelectric properties of low-toxic and earth-abundant copper selenide thermoelectric material by microwave annealing. Journal of Alloys and Compounds. 2022; 904: 1654131. https://doi.org/10.1016/j.jallcom.2022.164131
Wei T.-R., Qin Y., Deng T., ... Chen L. Copper chalcogenide thermoelectric materials . Science China Materials. 2018;62: 8–24. https://doi.org/10.1007/s40843-018-9314-5
Alonso-Vante N. Chalcogenide materials for energy conversion. In: Nanostructure Science and Technology. Springer International Publishing; 2018. 226p. https://doi.org/10.1007/978-3-319-89612-0
Hu H., Ju Y., Yu J., … Li J.-F. Highly stabilized and efficient thermoelectric copper selenide. Nature Materials. 2024;23: 527–534. https://doi.org/10.1038/s41563-024-01815-1
Sanghoon X. L., Tengfei L. J., Zhang L. Y-H. Chalcogenide. From 3D to 2D and beyond. Elsevier; 2019. 398 p.
Wei J., Yang L., Ma Z., ... Wang X. Review of current high-ZT thermoelectric materials. Journal of Materials Science. 2020;55: 12642–12704 . https://doi.org/10.1007/s10853-020-04949-0
Chetty R., Balia A., Mallik R. C. Tetrahedrites as thermoelectric materials: an overview. Journal of Material Chemistry C. 2015;3: 12364–12378. https://doi.org/10.1039/C5TC02537K
Suekun K., Takabatake T. Research update: Cu–S based synthetic minerals as efficient thermoelectric materials at medium temperatures. APL Materials. 2016;4:104503. https://doi.org/10.1063/1.4955398
Liu Y., Kretinin A. V., Liu X., ... Freer R. Thermoelectric performance of tetrahedrite (Cu12Sb4S13) thin films: the influence of the substrate and interlayer. ACS Applied Electronic Materials. 2023;6(5): 2900–2908. https://doi.org/10.1021/acsaelm.3c00909
Palchoudhury C. S., Ramasamy K., Gupta A. Multinary copper-based chalcogenide nanocrystal systems from the perspective of device applications. Nanoscale Advances. 2020;2(8): 3069–3082. https://doi.org/10.1039/d0na00399a
Zhang D., Yang J., Bai H., Yubo L. Significant average ZT enhancement in Cu3SbSe4-based thermoelectric material via softening p-d hybridization. Journal of Materials Chemistry A. 2019;10: 1039–1048. https://doi.org/10.1039/c9ta05115e
Studenyak I. P., Pogodin A. I., Studenyak V. I., ... Kúš P. Electrical properties of copper- and silver-containing superionic (Cu1−xAgx)7SiS5I mixed crystals with argyrodite structure. Solid State Ion. 2020;345: 115183–115186. https://doi.org/10.1016/j.ssi.2019.115183
Bayramova U. R., Babanly K. N., Ahmadov E. I., Mashadiyeva L. F., Babanly M. B. Phase equilibria in the Cu2S-Cu8SiS6-Cu8GeS6 system and thermodynamic functions of phase transitions of the Cu8Si(1−X)GeXS6 argyrodite phases. Journal of Phase Equilibria and Diffusion. 2023;44: 509–519. https://doi.org/10.1007/s11669-023-01054-y
Babanly M. B., Yusibov Y. A., Imamaliyeva S. Z., Babanly D. M., Alverdiyev I. J. Phase diagrams in the development of the argyrodite family compounds and solid solutions based on them. Journal of Phase Equilibria and Diffusion. 2024;45(12): 228-255. https://doi.org/10.1007/s11669-024-01088-w
Babanly M. B., Mashadiyeva L. F.,Imamaliyeva S. Z., Babanly D. M., Tagiyev D. B., Yusibov Yu. A. Complex popperbased chalcogenides: a review of phase equilibria and thermodynamic properties Russ. Condensed Matter and Interphases. 2024;26(4): 579–619. https://doi.org/10.17308/kcmf.2024.26/12367
Mammadov F. M., Babanly D. M., Amiraslanov I. R., Tagiev D. B., Babanly M. B. System FeS–Ga2S3–In2S3. Russian Journal of Inorganic Chemistry. 2021;66(10): 1533–1543. https://doi.org/10.1134/S0036023621100090
Abdullayeva Sh. S, Bakhtiyarly I. B, Kurbanova R. J, Mukhtarova Z. M. The quasi-binary Cu3In5S9-FeIn2S4 section. Condensed Matter and Interphases. 2022;24(2): 182–186. https://doi.org/10.17308/kcmf.2022.24/9257
Mammadov S. H., Mammadov A. N., Kurbanova R .C. Quasi-binary section Ag2SnS3–AgSbS2. Russian Journal of Inorganic Chemistry. 2020;65(2): 217–221. https://doi.org/10.1134/S003602362001012X
Mashadiyeva L. F., Babanly D. M., Hasanova Z. T., Usibov Y. A., Babanly M. B. Phase relations in the Cu-As-S system and thermodynamic properties of copper-arsenic sulfides. Journal of Phase Equilibria and Diffusion. 2024:45; 567–582. https://doi.org/10.1007/s11669-024-01115-w
Abdullaeva Sh. S., Mammadov F. M., Bakhtiyarly I. B. Quasi-binary section CuInS2–FeIn2S4. Russian Journal of Inorganic Chemistry. 2020;65: 100–105. https://doi.org/10.1134/S0036023619110020
Orujlu E. N., Aliev Z. S., Babanly M. B. The phase diagram of the MnTe–SnTe–Sb2Te3 ternary system and synthesis of the iso- and aliovalent cation-substituted solid solutions. Calphad. 2022;76: 102398. https://doi.org/10.1016/j.calphad.2022.102398
Mammadov F. M. New version of the phase diagram of the MnTe- Ga2Te3 system. New Materials, fompounds and Applications. 2021;5(2): 116–121. Available at: http://jomardpublishing.com/UploadFiles/Files/journals/NMCA/V5N2/MammadovF.pdf
Ismailova E. N., Mashadieva L. F., Bakhtiyarly I. B., Gasymov V. A., Gurbanova R. J., Mammadova F. M. Phase equilibria in the Cu2Se - Cu3SbSe4 - Cu2SnSe3 system. Chemical Problems. 2025;23(1): 36–46. https://doi.org/10.32737/2221-8688-2025-1-36-46
Ismayilova E. N., Mashadieva L. F., Bakhtiyarly I. B, Babanly M. B. Phase equilibria in the Cu2SnSe3–Sb2Se3–Se system. Condensed Matter and Interphases. 2023;25(1): 47-54. https://doi.org/10.17308/kcmf.2023.25/10973
Ismailova E. N., Mashadieva L. F.,Bakhtiyarly I. B, Babanly M. B. Phase equilibria in the Cu2Se–SnSe–Sb2Se3 system. Azerbaijan Chemical Journal. 2022;1: 73-82. https://doi.org/10.32737/0005-2531-2022-1-73-82
Ismayilova E. N., Baladzhayeva A. N., Mashadiyeva L. F. Phase equılıbrıa along the Cu3SbSe4-GeSe2 sectıon of the Cu-Ge-Sb-Se system. New Materials, Compounds and Applications. 2021;5(1): 52–58. Available at: https://jomardpublishing.com/UploadFiles/Files/journals/NMCA/V5N1/Ismayilova_et_al.pdf
Parasyuk O. V., Olekseyuk I. D., Marchuk O. V. The Cu2Se–HgSe–SnSe2 system. Journal of Alloys and compounds. 1999;287(1-2): 197–205. https://doi.org/10.1016/S0925-8388(99)00047-X
Babanly M. B., Yusibov Yu. A., Abishov V. T. Threecomponent chalcogenides based on copper and silver*. Baku: BSU Publ.; 1993. 342 p. (In Russ.).
Sharma B. B., Ayyar R., Singh H. Stability of the tetrahedral phase in the AI 2BIVCVI 3 group of compounds. Physica Status Solidi A. 1977;40(2): 691–697. https://doi.org/10.1002/pssa.2210400237
Marcano G., Chalbaud L., Rincón C., Sánchez P. G. Crystal growth and structure of the semiconductor Cu2SnSe3. Materials Letters. 2002;53(3): 151–154. https://doi.org/10.1016/s0167-577x(01)00466-9
Delgado G. E., Mora A. J., Marcano G., Rincon C. Crystal structure refinement of the semiconducting compound Cu2SnSe3 from X-ray powder diffraction data. Materials Research Bulletin. 2003;38: 1949–1955. https://doi.org/10.1016/j.materresbull.2003.09.017
Pfitzner A. Crystal structure of tri-copper tetraselenoantimonate Cu3SbSe4. Zeitschriftfür Kristallographie-Crystalline Materials. 1994;209(8): 685–685. https://doi.org/10.1524/zkri.1994.209.8.685
Fan Y., Xie S., Sun J., Tang X., Tan G. Quasiisostructural alloying of Cu2SnSe3–Cu3SbSe4 toward higher thermoelectric performance. ACS Applied Energy Materials. 2021;4 (6): 6333–6339. https://doi.org/10.1021/acsaem.1c01155
Copyright (c) 2025 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases

This work is licensed under a Creative Commons Attribution 4.0 International License.








