Composition, structure, and electrophysical properties of natural zeolite clinoptilolites subjected to mechanical activation with potassium hydrosulfate
Abstract
Objectives: The mechanochemical modification of zeolites with the addition of acidic salts causes an increase in the defectiveness of their structure, a change in the dispersion of the powder, and the conductivity of tableted samples. The aim of the study was to obtain mineral samples with improved conductivity using a mechanochemical method from air-dry mixtures of clinoptilolite-stilbite, clinoptilolite rocks and, potassium hydrosulfate in different ratios.
Experimental: The shape and size of particles, chemical and phase composition of powders, and their physical properties were studied using electron microscopy, energy-dispersive X-ray spectrometry, X-ray phase analysis, differential scanning calorimetry, infrared spectroscopy, sieve analysis, gravimetry, and air permeability. The electrical conductivity of the tableted samples was measured using a three-electrode circuit in the temperature range from 25 to 100 °C.
Conclusions: The results of the study demonstrated that mechanical treatment of mixtures of zeolites with an acidic salt leads to the amorphization of stilbite and feldspar, polymorphic transformations of quartz into cristobalite and tridymite, and an increase in structural defects. The interaction of components occurs via the silanol groups of clinoptilolite and hydrosulfate groups through the formation of hydrogen bonds and with the involvement of water molecules. It was also established that the electrical conductivity of a mineral tablet sample based on clinoptilolite rock and potassium hydrosulfate in an equimass ratio, subjected to shock-shear action with a mechanical energy dose of 2.16 kJ/g, amounted to 4.26·10–4 S·m–1 at 100 °C. Electrical conductivity values of the same order were obtained earlier for the mechanochemical activation of
natural zeolites with potassium hydrophosphates. Consequently, the hydrosulfate anion does not make a significant contribution to the conductivity of zeolite samples compared to the hydrophosphate anion.
Downloads
References
Lesiak P. Zeolites as catalysts: a review of the recent developments. Jntes. 2023;2: 065–073. https://doi.org/10.53412/jntes-2023-2-4.
Luzanova V. D., Rozhmanova N. B., Lanin S. N., Nesterenko P. N. Application of zeolites in high-performance liquid chromatography. Sorbtsionnye I Khromatograficheskie Protsessy. 2023;23(4): 691–704. (In Russ.). https://doi.org/10.17308/sorpchrom.2023.23/11576
Stocker K., Ellersdorfer M., Lehner M., Raith J. G. Characterization and utilization of natural zeolites in technical applications. BHM Berg- Und Hüttenmännische Monatshefte. 2017;162 (4): 142–147. https://doi.org/10.1007/s00501-017-0596-5
Grifasi N., Ziantoni B., Fino D., Piumetti M. Fundamental properties and sustainable applications of the natural zeolite clinoptilolite. Environmental Science and Pollution Research. 2024; 32:27805–27840. https://doi.org/10.1007/s11356-024-33656-5
Barbosa J. C., Gonçalves R., Costa C. M., … Lanceros-Méndez S. Metal-organic frameworks and zeolite materials as active fillers for lithium-ion battery solid polymer electrolytes. Materials Advances. 2021;2(12): 3790–3805. https://doi.org/10.1039/d1ma00244a
Li M., Chi X., Yu J. Zeolite-based electrolytes: a promising choice for solid-state batteries. PRX Energy. 2022;1(3): 1–16. https://doi.org/10.1103/prxenergy.1.031001
Shi H., Zhang J., Li J. The effect of guest cations on proton conduction of LTA zeolite. RSC Advances. 2021;11(10): 5393–5398. https://doi.org/10.1039/d0ra09917a
Kalogeras J. M., Vassilikou-Dova A. Molecular mobility in microporous architectures: conductivity and dielectric relaxation phenomena in natural and synthetic zeolites. Crystal Research and Technology. 1996;31(6): 693–726. https://doi.org/10.1002/crat.2170310602
Bolotin O. A., Goncharuk V. P., Bologa M. K., Mitina T. F., Polikarpov, A. A., Kostryukova, N. V. Activation of zeolite in a magnetic fluidized bed. Electronic Processing of Materials. 2024;60(3): 50–55. (In Russ.) https://doi.org/10.52577/eom.2024.60.3.50
Buzimov A. Y., Kulkov S. N., Gömze L. A., Géber R., Kocserha, I. Effect of mechanical treatment on the structure and properties of natural zeolite. Perspektivnye Materialy. 2018;9(5): 031–039. https://doi.org/10.30791/1028-978x-2018-4-31-39
Dabizha O. N., Soloboeva T. P., Khamova T. V., Shilova O. A. Mechanical activation of clinoptilolites with sodium and ammonium hydrophosphates to improve their electrophysical properties. Glass Physics and Chemistry. 2023; 49(3): 293–305. https://doi.org/10.1134/S1087659623600059
Astapova E. S., Pavlov S. S., Astapov I. A. Determination of structure characteristics and conductivity of Na-HSzeolite with Mo, W and Ni nanopowders. The Bulletin of the Adyghe State University, the series 4: Natural, Mathematical and Technical Sciences. 2012;2(4): 31–39. (In Russ.) Available at: https://www.elibrary.ru/item.asp?id=18055827
Rainer D. N., Morris R. E. New avenues for mechanochemistry in zeolite science. Dalton Transactions. 2021;50(26): 8995–9009. https://doi.org/10.1039/d1dt01440d
Nikashina V. A., Streletskii A. N., Kolbanev I. V., … Shumskaya L. G. Effect of mechanical activation on the properties of natural zeolites. Inorganic Materials. 2011;47(12): 1341–1346. https://doi.org/10.1134/S0020168511120144
Bebiya A. G., Gulyaev P. Y., Milyukova I. V. Change of physical and chemical properties clinoptilolite after mechanical activation. Yugra State University Bulletin. 2012;7-8: 7-13. (in Russ.). Available at: https://www.elibrary.ru/item.asp?id=24989138
Velichkina L. M., Zaikovskii V. I., Barbashin Ya. E., Ryabova N. V., Perevezentsev S. A., Vosmerikov A. V. Changes in the physicochemical properties of nickel-containing ZSM‑5 zeolite under mechanical treatment. Chemistry for Sustainable Development. 2020;28 (4): 378–386. (In Russ.). https://doi.org/10.15372/khur2020242
Ovsyuk N. N., Goryaĭnov S. V. Amorphous-toamorphous phase transition in zeolites. JETP Letters. 2006; 83(3): 138–142. https://doi.org/10.1134/S0021364006030064
Buzimov A. Y., Eckl W., Gömze L. A., Kocserha I., Kurovics E., Kulkov A. S., Kulkov S. N. Effect of mechanical treatment on properties of Si-Al-O zeolites. Epitoanyag - Journal of Silicate Based and Composite Materials. 2018;70(1): 023–026. https://doi.org/10.14382/epitoanyag-jsbcm.2018.5
Dabizha O. N., Soloboeva T. P., Kalinina M. V., Shilova O. A. Structure formation and electrophysical properties of natural zeolites mechanically activated with potassium hydrophosphate to produce solid electrolytes. Glass Physics and Chemistry. 2024;50(4): 428–443. https://doi.org/10.1134/S1087659624600996
de Izarra A., Coudert F. X., Fuchs A. H., Boutin A. Molecular simulation of the impact of defects on electrolyte intrusion in zeolites. Langmuir. 2023;39(51): 19056–19063. https://doi.org/10.1021/acs.langmuir.3c03306
Ponomareva V. G., Lavrova G. The investigation of disordered phases in nanocomposite proton electrolytes based on MeHSO4 (Me = Rb, Cs, K). Solid State Ionics. 2001;145: 197–204. https://doi.org/10.1016/S0167-2738(01)00957-2
Dabizha O. N., Derbeneva T. V., Khamova T. V., Shilova О. А. Controlling the sorption activity of clinoptilolites with mechanical activation. Inorganic Materials. 2021;57(4): 399-408. https://doi.org/10.1134/s0020168521040038
Soloboeva T. P., Dabizha O. N. Investigation of electrical conductivity of mechanically activated clinoptilolite rocks. In: Fundamental Bases of Mechanochemical Technologies: VI International conference, 21-24 November 2022, Novosibirsk. Novosibirsk: ISSCM SB RAS, 2022. p. 46.
Rat’ko A. I., Ivanets A. I., Kulak A. I., Morozov, E. A., Sakhar I. O. Thermal decomposition of natural dolomite. Inorganic Materials. 2011;47(12): 1372–1377. https://doi.org/10.1134/s0020168511120156
Kosenko N. F., Smirnova M. A. Quartz polymorphic transformations stimulated by mechanical treatment. Refractories and Industrial Ceramics. 2012;7-8: 7–13. (In Russ.). https://elibrary.ru/item.asp?id=17889319
Selezneva E. V., Makarova I. P., Grebenev V. V., … Choundhury R. R. The changes of thermal, dielectric, and optical properties at insertion of small concentrations of ammonium to K3H(SO4)2 crystals. Crystallography Reports. 2018; 63: 553–562. https://doi.org/10.1134/s1063774518040247
Swain D., Bhadram V. S., Pradhan G. K., Bhat S. V., Narayana C., Rao C. B. H. Superionic phase transition in KHSO4: a temperature-dependent raman investigation. Journal of Physical Chemistry A. 2010;114(37): 10040-10044. https://doi.org/10.1021/jp103005g
Periasamy A., Muruganand S., Palaniswamy M. Vibrational studies of Na2SO4, K2SO4, NaHSO4 and KHSO4 crystals. RASĀYAN Journal of Chemistry. 2009;2 (4): 981–989. Available at: https://rasayanjournal.co.in/vol-2/issue-4/34.pdf
Payan F., Haser R. On the hydrogen bonding in potassium hydrogensulphate. Comparison with a previous crystal structure determination. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry. 1976;32(6): 1875–1879. https://doi.org/10.1107/s0567740876006572
Cura Ö., Ajjaq A., Çağırtekin A., Cavdar S., Acar S. Low-energy ball milling effect on the dielectric response and electrical transport mechanisms of natural clinoptilolite zeolites in a wide temperature range. Materials Today Communications. 2021;29: 102964. https://doi.org/10.1016/j.mtcomm.2021.102964
Copyright (c) 2025 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases

This work is licensed under a Creative Commons Attribution 4.0 International License.








