ANODIC FORMATION AND PROPERTIES OF COPPER OXIDES ON Cu,Zn(α)-ALLOYS WITH STRUCTUTE-DISORDERED SURFACE LAYER

  • Maxim М. Murtazin post-graduate student, Department of Physical Chemistry, Voronezh State University; ph.: +7 (473) 2208538, e-mail: murtazin@chem.vsu.ru
  • Dmitrij S. Eliseev post-graduate student, Department of Physical Chemistry, Voronezh State University; ph.: +7 (473) 2208538, e-mail: ximik001@yandex.ru
  • Tatyana М. Kitaeva master`s student, Department of Physical Chemistry, Voronezh State University; ph.: +7 (473) 2208538, e-mail: tkitaeva93@gmail.com
  • Svetlana N. Grushevskaya Cand. Sci. (Chem.), Associate Professor of Physical Chemistry Department, Voronezh State University, ph.: +7(473) 2208546, e-mail: sg@chem.vsu.ru
  • Alexander V. Vvedenskii Dr. Sci. (Chem.), Professor, Chief of Physical Chemistry Department, Voronezh State University, ph.: +7 (473) 2208546, e-mail: alvved@chem.vsu.ru
Keywords: copper-zinc alloys, selective dissolution, surface layer, vacancy defectiveness, anodic oxide formation

Abstract

The paper is aimed to reveal an influence of vacancy defectiveness of the alloys surface layer on anodic oxide formation and electronic properties of oxide nanofilms. The monitored vacancy defectiveness of surface layer in Cu-Zn alloys (up to 30 at.% of Zn) was generated in the course of potentiostatic selective dissolution (SD) in aqua deaerated solution 0.01 M HCl + 0.09 M KCl. It was revealed that the SD is limited by interdiffusion of alloy’s components in the surface layer. The diffusion coefficient and vacancy concentration (or vacancy defectiveness) in the surface layer noticeably increase with the potential of SD. Atomic force microscopy and impedance measurements prove a slight increase of capacity and roughness at the alloy/solution boundary after the selective dissolution. The anodic oxide formation on the alloys with a certain vacancy defectiveness was examined by linear voltamperometry and chronoamperometry in aqua deaerated solution 0.1 M KOH. The potentials of formation of Cu(I) and Cu(II) oxides do not depend on the vacancy concentration in the alloy’s surface layer. Coulometric measurements show a slight decrease of current efficiency of oxide formation with the vacancy concentration. The  electronic properties of copper oxides on these alloys were determined by Mott-Schottky method. It was shown that the flat band potentials of Cu(I) and Cu(II) oxides do not change at transition from copper to alloys with different concentration of zinc and superequilibrium vacancies. The concentration of acceptor defects in Cu(I) and Cu(II) oxides significantly increases with the vacancy defectiveness in the surface layer of Cu-Zn alloys.

ACKNOWLEDGEMENTS

The work was supported by the Ministry of Education of the Russian Federation in the framework of Goszadaniya universities in 2014-2016 gg., 675 project.

Downloads

Download data is not yet available.

References

1. Vvedenskii A. V., Grushevskaya S. N., Ganzha S. V., Eliseev D. S. J. Solid State Electrochemistry, 2014, vol. 18, no. 10, p. 2755-2770. DOI: 10.1007/s10008-014-2522-z. Available at: www.link.springer.com.
2. Grushevskaya S. N., Eliseev D. S., Ganzha S. V., Vvedenskii A. V., Chernyshev A. V. Condensed Matter and Interphases, 2013, vol. 15, no. 2, pp. 106-115. Available at: http://www.kcmf.vsu.ru/resources/t_15_2_2013_003.pdf.
3. Grushevskaya S. N., Eliseev D. S., Ganzha S. V., Vvedenskii A. V. Condensed Matter and Interphases, 2013, vol. 15, no. 3, pp. 253-265. Available at: http://www.kcmf.vsu.ru/resources/t_15_3_2013_006.pdf.
4. Vvedenskii A. V., Grushevskaya S. N., Ganzha S. V., Eliseev D. S., Abakumova L. I. J. Solid Electrоchem., 2014, vol. 18, no. 12, p. 3437-3451. DOI: 10.1007/s10008-014-2569-x. Available at: www.link.springer.com.
5. Vvedenskii A. V., Grushevskaya S. N., Ganzha S. V. Condensed Matter and Interphases, 2016, vol. 18, no. 2, pp. 185-197. Available at: http://www.kcmf.vsu.ru/resources/t_18_2_2016_002.pdf.
6. Vvedenskii A. V., Grushevskaya S. N., Ganzha S. V. Condensed Matter and Interphases, 2016, vol. 18, no. 3, pp. 312-325. Available at: http://www.kcmf.vsu.ru/resources/t_18_3_2016_002.pdf.
7. Kozaderov O. A., Vvedenskii A. V. Mass Transfer and Phase Formation During Anodic Selective Dissolution of Homogeneous Alloys. Voronezh, Nauchnaya Kniga Publ., 2014, 287 p. (in Russian)
8. Marshakov I. K., Vvedenskii A. V., Kondrashin V. Yu., Bokov G. A. Anodic Dissolution and Selective Corrosion of Alloys. Voronezh, Voronezh State University Publ., 1988, 208 p. (in Russian)
9. Pickering H. W., Wagner C. J. Electrochem. Soc., 1967, vol. 114, no. 7, p. 698-706. DOI: 10.1149/1.2426709. Available at: http://jes.ecsdl.org.
10. Pickering H. W., Byrne P. J. J. Electrochem. Soc., 1971, vol. 118, no. 2, p. 209-215. DOI: 10.1149/1.2407969 Available at: http://jes.ecsdl.org.
11. Milosev I., Strehblow H.-H. J. Electrochem. Soc., 2003, vol. 150, no. 11. p. B517-B524 DOI: 10.1149/1.1615997 Available at: http://jes.ecsdl.org.
12. Rylkina M. V., Kuznetsov Yu. I., Kalashnikova M. V., Eremina M. A. Zashchita Metallov, 2002, vol. 38, no. 4, pp. 387-393.
13. Morales J., Fernandez G. T., Esparza P., Gonzalez S., Salvarezza R. C., Arvia A. J. Corr.Sci., 1995, vol. 37. no. 2. p. 211-225 DOI: 10.1016/0010-938X(94)00108-I. Available at: www.sciencedirect.com.
14. Morales J., Esparza P., Fernandez G. T., Gonzalez S., Garcia J. E., Caceres J., Salvarezza R. C., Arvia A. J. Corr.Sci., 1995, vol. 37. no. 2. p. 231-239 DOI: 10.1016/0010-938X(94)00109-J. Available at: www.sciencedirect.com.
15. Bard A. J., Stratmann M., Licht S. Encyclopedia of Electrochemistry, vol. 6: Semiconductor Electrodes and Photoelectrochemistry. Wiley-VCH, 2002, 608 p.
16. Strehblow H-H., Maurice V., Marcus P. Electrochim. Acta, 2001, vol. 46, no. 24, p. 3755-3766. DOI: 10.1016/S0013-4686(01)00657-0. Available at: www.sciencedirect.com.
17. Grden M. J. Electroanal. Chem., 2014, vol. 713, p. 47-57. DOI: 10.1016/j.jelechem.2013.11.025. Available at: www.sciencedirect.com.
18. Zhang X. G. Corrosion and Electrochemistry of Zinc. New York, Springer, 1996, 474 p.
19. Protasova I. V., Nedobezhkina L. A. Condensed Matter and Interphases, 2016, vol. 18, no. 1, pp. 91-101. Available at: http://www.kcmf.vsu.ru/resources/t_18_1_2016_010.pdf.
20. Marshakov I. K., Lesnykh N. N., Tutukina N. M., Volkova L. E. Condensed Matter and Interphases, 2007, vol. 9, no. 2, pp. 138-141. Available at: http://www.kcmf.vsu.ru/resources/t_09_2_2007_008.pdf.
21. Sugawara H., Schimodaira S. J. Jap. Inst. of Met., 1966, vol. 30, no. 7, pp. 631-635.
22. Kozaderov O. A., Vvedenskii A. V. Condensed Matter and Interphases, 2014, vol. 16, no. 1, pp. 32-41. Available at: http://www.kcmf.vsu.ru/resources/t_16_1_2014_006.pdf.
23. Larikov L.N., Isaychev V.I. Diffusion in Metals and Alloys. Kiev, Naukova Dumka Publ., 1987. 510 p. (in Russian)
24. Orlov A. N., Trushin Yu. V. Energy of Point Defects in Crystals. Moscow, Energoizdat Publ., 1983. 80 p.
25. Vvedenskii A. V., Marshakov I. K. Materials Science, 1990, no. 4, pp. 44-47.
26. Vvedenskii A.V., Marshakov I.K., Stol'nikov O.F., Bobrinskaya E.V. Protection of Metals, 1991, vol. 27, no. 3, pp. 388-394.
27. Komura S., Furakawa H. Dynamics of Ordering Process in Condensed Matter. New-York, 1988, 574 p.
28. Clarebrough L. M., Loretto M. H. Proc. R. Soc. Lond. A, 1960, vol. 257, p. 326-327. DOI: 10.1098/rspa.1960.0155 Available at: rspa.royalsocietypublishing.org.
29. Pearson W. B. Handbook of Lattice Spacing and Structures of Metals and Alloys. New-York, 1958, 1054 p.
30. Ganzha S. V., Maksimova S. N., Grushevskaya S. N., Vvedenskii A. V. Protection of Metals and Physical Chemistry of Surfaces, 2011, vol. 47, no. 2, pp. 191-202. DOI: 10.1134/S2070205111020080. Available at: www.link.springer.com.
31. HeeJin J., HyukSang K. J. Solid State Electrochem., 2015, vol. 19, no. 12, p. 3427-3438. DOI: 10.1007/s10008-015-2830-y. Available at: www.link.springer.com.
32. Nakaoka K., Ueyama J., Ogura K. J. J. Electrochem. Soc., 2004, vol. 151, no. 10, P. C661-C665. DOI: 10.1149/1.1789155. Available at: http://jes.ecsdl.org.
33. Bockris J. O. M., Khan S. U. M. Surface Electrochemistry. A Molecular Level Approach. New-York, 1993, 1014 p.
34. Dean M. H., Stimming U. Corr. Sci., 1989, vol. 29, no. 2-3, p. 199-211. DOI: 10.1016/0010-938X(89)90030-9. Available at: www.sciencedirect.com.
35. Raebinger H., Zunger A. Phys. Rew. B, 2007, vol. 76, no. 4, p. 045209. DOI: 10.1103/PhysRevB.76.045209 Available at http://journals.aps.org.
36. Dignam M. J. Can. J. Chem., 1978, vol. 56. no. 5, p. 595-605. DOI: 10.1139/v78-097. Available at: www.nrcresearchpress.com.
37. Dignam M. J., Kalia R. K. Surf. Sci., 1980, vol. 100, no. 1-2, p. 154-177. DOI: 10.1016/0039-6028(80)90450-1. Available at: www.sciencedirect.com.
Published
2017-11-06
How to Cite
MurtazinM. М., Eliseev, D. S., KitaevaT. М., Grushevskaya, S. N., & Vvedenskii, A. V. (2017). ANODIC FORMATION AND PROPERTIES OF COPPER OXIDES ON Cu,Zn(α)-ALLOYS WITH STRUCTUTE-DISORDERED SURFACE LAYER. Condensed Matter and Interphases, 19(1), 98-111. https://doi.org/10.17308/kcmf.2017.19/181
Section
Статьи