ELECTRODEPOSITION KINETICS AND THE SURFACE MORPHOLOGY OF CADMIUM AND CADMIUM-ORGANIC COATINGS CONTAINING ε-CAPROLACTAM

  • Lilia М. Skibina Cand. Sci (Chem.), Researcher, Southern Federal University; ph.: +7(904) 5054942, e-mail: skibina@sfedu.ru
  • Delgado Oscar Andres Duran postgraduate student, Southern Federal University; ph.: +7(989) 7197895, e-mail: duran87@yandex.ru
  • Alla I. Sokolenko Cand. Sci (Chem.), Researcher, Don State Technical University, тел.: (863 2738392, e-mail: asokolenko@rambler.ru
Keywords: electrodeposition, kinetics, chronopotentiometry, morphology, surface, coatings, complexation, adsorption

Abstract

Metal polymeric coverings are of special interest as a new class of materials that have the properties of both metals and polymers. Unfortunately, information about the similar coverings electrodeposition and the mechanism of transformation taking place in a solution or at electrode surface is quite limited. We investigated the influence of caprolactam (CPL), tetrahydrofuran (THF) and propylene carbonate (PC) additives on the kinetics of cathodic processes in the cadmium sulfate electrolyte, microstructure and the grain size of metal and metal–polymeric deposits. The addition of cyclic lactam changes adsorption and coordination properties of the electrolyte components, the type of cathodic process and leads to a considerable improvement in their structure and physical-mechanical characteristics.

Using chronopotentiometry analysis with impedance data, it was found that the real electroactive species formed in aqueous–organic mixtures determine the electrodeposition kinetics due to complexation of discharging metal ions with adsorbed molecules of additives. It was established the e-caprolactam addition resulted in the growth of cathodic polarization DE the value of which depends on the volume concentration coL

According to the polarization and impedance measurements, an increase in coL intensifies the participation of organic molecules, first in the adsorption process at the Cd-cathode (coL ≤ 0.1 M) and then in the complexion with cadmium ions in the solution volume (coL > 0.1 M). In the latter case, elecroactive particles that are formed in the solution take place in electrodeposion reactons which leads to increased CPL content in the Cd-covering. The influence of THF and PC results in a slight increase of exchange current and coefficient bc and a decrease of diffusion coefficient D and transfer coefficient α.

The codeposition of metal with polymer leads to a significant decrease in the grain volume and size of metal inclusions. A comparison of the 3D scans of the surface of the obtained coatings verified the formation of the cadmium based metal-polymer coatings in presence of CPL. Varying the electrolyte composition and technological conditions of plating makes it possible to control both the metal–polymer ratio in the coating and the grain sizes of the metallic phase in the formed metal–polymeric films.

Downloads

Download data is not yet available.

References

1. Kuznetsov V. V., Skibina L. M. Nature of the Solvent and the Structure of the Ligand in the Electroplating of Metals. Southern Federal University Publ., 2009, p. 367. (in Russian)
2. Tseluikin V. N. Protection of Metals and Physical Chemistry of Surfaces, 2009, vol. 45, no. 3, pp. 287-301.
3. Cmirnov V. A., Sukholentsev E. A., Kuznetsov V. V., et al. Protection of Metals,1992, vol. 28, no. 5, pp. 811-815.
4. Kapitsa M. Technologies in Electronic Industry, 2006, no. 2, pp. 20-24.
5. Saha S., Taguchi T., Tachikawa N., Yoshii K., Katayama Y. Electrochimica Acta, 2015, vol. 183, pp. 42–48. https://doi.org/10.1016/j.electacta.2015.05.018
6. Dolati A., Afshar A., Ghasemi H. Materials Chemistry and Physics, 2005, vol. 94(1), pp. 23–28. https://doi.org/10.1016/j.matchemphys.2005.03.057
7. Hamilakis S., Balgis D., Milonakou-Koufoudaki K., Mitzithra C., Kollia C., Loizos Z. Materials Letters, 2015, vol. 145, pp. 11–14. https://doi.org/10.1016/j.matlet.2015.01.052
8. Loshkarev Yu. M., Vargalyuk V. F. Russian Journal of Electrochemistry, 1977, vol. 13, no. 9, pp. 1321-1326.
9. Kuznetsov V. V., Bozhenko L. G., Kucherenko S. S., et al. Russian Journal of Electrochemistry, 1988, vol. 24, no. 5, pp. 633-639.
10. Kuznetsov V. V., Skibina L. M., Mikheeva M. A. Protection of Metals and Physical Chemistry of Surfaces, 2011, vol. 47, no. 2, pp. 220–224. https://doi.org/10.1134/S2070205111010102
11. Kuznetsov V. V., Skibina L. M., Loskutnikova I. N., et al. Protection of Metals, 1998, vol. 34, no. 5, pp. 521-526.
12. Loshkarev Yu. M., Vargalyuk V. F. Double Layer and Adsorption on Solid Electrodes. Tartu Publ., 1975, pp. 158-167. (in Russian)
13. Frumkin A. N. The Main Questions of Modern Theoretical Electrochemistry. Mir Publ., 1965, pp. 302-317. (in Russian)
14. Loshkarev Yu. M. Russian Journal of Electrochemistry, 1973, vol. 9, no. 9, pp. 1302-1305.
15. Tikhonov K. I., Zabolotskii V. I., Vol'ter D. Russian Journal of Electrochemistry, 1974, vol. 10, no. 6, pp. 985-987.
16. Baibarova E. Ya., Emel'yanenko G. A., Kukleva L. A. Russian Journal of Inorganic Chemistry, 1975, vol. 20, no. 12, pp. 3194-3198.
17. Kuznetsov V. V., Fedorova O. V. Inhibiting and Passivating Metals. Rostov State University, Publ., 1976, pp. 181-185. (in Russian)
18. Loshkarev Yu. M. Protection of Metals, 1972, vol. 8, no. 2, pp. 163-167.
19. Loshkarev M. A., Loshkarev Yu. M., Kudina I. P. Russian Journal of Electrochemistry, 1977, vol. 13, no. 5, pp. 715-720.
20. Kuznetsov V. V., Skibina L. M., Levochkin R. A., Vertiy I. V. Protection of Metals, 2003, vol. 39, no. 2, pp. 176-181.
21. Skibina L. M., Burdina E. I., Sokolenko A. I. Protection of Metals and Physical Chemistry of Surfaces, 2012. vol. 48, no. 4, С. 449-454. https://doi.org/10.1134/S2070205112040168
22. Skibina L. M., Burdina E. I., Dorogan I. V., Bumber A. A. Russian Journal of Electrochemistry, 2013, vol. 49, no. 2, pp. 124-130. https://doi.org/10.1134/S102319351302016X
23. Novikov A. N., Lenina O. F., Vasilev V. A. Chemistry and Chemical Technology, 2009, vol. 52, no. 4, p. 20.
24. Delakhei P. New Devices and Methods in Electrochemistry. Inostr. Literatury Publ., 1957, 612 p. (in Russian)
25. Vyacheslavov, P. M. New Electrochemical Coatings. Lenizdat Publ., 1972, 145 p. (in Russia)
26. Zakharov M. S., Bakanov V. I., Pnev V. V. Chronopotentiometry. Chemistry Publ., 1978, 11 p. (in Russian)
27. Baibarova E. Ya., Emel'yanenko G. A., Kukleva L. A. Ukr. Chem. Journal, 1974, vol. 40, no. 2, p. 163.
28. Kravtsov V. I. Electrode Processes in Solutions of Metal Complexes. Leningrad State University Publ., 1969, 192 p. (in Russian)
29. Kravtsov V. I.Russian Chemical Reviews, 1976, vol. 45, no. 4, p. 579.
30. Kuznetsov V. V., Skibina L. M., Sokolenko A. I. Protection of Metals and Physical Chemistry of Surfaces, 2004, vol. 40, no. 4, p. 348.
31. Mazuritskii M. I., Duimakaev Sh. I., Skibina L. M. Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques, 2014, no. 8, p. 38. https://doi.org/10.7868/S0207352814080095
Published
2017-11-07
How to Cite
SkibinaL. М., Duran, D. O. A., & Sokolenko, A. I. (2017). ELECTRODEPOSITION KINETICS AND THE SURFACE MORPHOLOGY OF CADMIUM AND CADMIUM-ORGANIC COATINGS CONTAINING ε-CAPROLACTAM. Condensed Matter and Interphases, 19(3), 430-440. https://doi.org/10.17308/kcmf.2017.19/220
Section
Статьи