• Svetlana М. Vavilova Cand. Sci. (Chem.), Lecture of Scientific and Mathematical Disciplines Department, Voronezh State Medical University named after N.N. Burdenko; ph.: +7(960) 1220157, e-mail:
  • Maksym А. Kryuchkov Ph.D (Chem.), Department of Chemistry, McGill University, Montreal, Quebec, Canada; e-mail:
  • Victoria V. Ignatуeva Cand. Sci. (Chem.), Assistant Professor of Pharmaceutical and Medicinal Chemistry Department M. Gorky Donetsk National Medical University, Donetsk People’s Republic; ph.: +38(050) 9001116, e-mail:
  • Ekaterina Е. Belousova Cand. Sci. (Chem.), Assistant Professor of Inorganic Chemistry Department, Donetsk National University, Donetsk People’s Republic; ph.: +38(050) 2958348
Keywords: polyoxometalates, isopolyanion, isopolyniobotungstate, Lindqvist anion, modeling complex formation in solution


The formation of complexes in the system Nb6O198-–WO42-–H+–H2O, where Nb:W = 3:3 and C0Nb+W= 10, 5, 2.5 and 1 mmol/L, was studied by pH–complexonometric titration. Using computer modeling of the processes of complexes formation (CLINP 2.1 software), concentrational constants of the mixed isopolyniobotungstate anions formation were obtained (Z=C0H+C0Nb+W=0−3.0Z=CH+0CNb+W0=0−3.0, background electrolyte is NaCl) and their distribution diagrams were built. The thermodynamic constants of HxNb3W3O19(5-x)- (х=0–3) formation were calculated, and it was shown that the formation of these anions takes place only after the polycondensation of the initial orthotungstate anions. Calcium and Thallium salts (Ca1.5Н2Nb3W3O19·12H2O and Tl5-xНxNb3W3O19·nH2O, respectively, x = 1–3) were prepared and characterized by X–ray spectral analysis, scanning electron microscopy, and IR–spectroscopy.


Download data is not yet available.


1. Maestre J. M., Sarasa J. P., Poblet C. Bo. J. M. Inorg. Chem., 1998, vol. 37, no. 12, pp. 3071-3077. DOI: 10.1021/ic960222r
2. Bannani F., Thouvenot R., Debbabi M. Eur. J. Inorg. Chem., 2007, pp. 4357–4363. DOI: 10.1002/ejic.200700357
3. Kim Gyu-Shik, Zeng Huadong, Neiwert W. A., Cowan J. J., Van Derveer D., Hill C. L., Weinstock I. A. Inorg. Chem., 2003, vol. 42, no. 18, pp. 5537-5544. Available at:
4. Lopez X., Weinstock I.A., Sarasa C. Bo. J. P., Poblet J. M. Inorg. Chem., 2006, vol. 45, no. 16, pp. 6467-6473. DOI: 10.1021/ic060112c
5. Driss H., Boubekeur K., Debbabi M., Thouvenot R. Eur. J. Inorg. Chem., 2008, pp. 3678-3686. DOI: 10.1002/ejic.200800235
6. Stein A., Fendorf M., Jarvie T. P., Mueller K. T., Benesi A. J., Mallouk T. E. Chem. Mater., 1995, vol. 7, no. 2, pp. 304-313. DOI:10.1021/cm00050a012
7. Rhule J. T., Hill C. L., Judd D. A. et al. Chem. Rev., 1998, vol. 98, no. 1, pp. 327-358. DOI: 10.1021/cr960396q
8. Haugsrud R., Norby T. Nat. Mater., 2006, vol. 5, pp. 193-196. doi:10.1038/nmat1591
9. Kawakami Y., Ikuta H., Wakihara M. J. Solid State Electrochem., 1998, vol. 2, no. 4, pp. 206-210. doi:10.1007/s100080050089
10. Thangadurai V., Adams S., Weppner W. Chem. Mater., 2004, vol. 16, no. 16, pp. 2998-3006. DOI: 10.1021/cm031176d
11. Anderson T. M., Rodriguez M. A., Stewart T. A., Bixler J. N., Wenqian Xu., Parise J. B., Nyman M. Eur. J. Inorg. Chem., 2008, pp. 3286-3294. DOI: 10.1002/ejic.200800415
12. Tsonev L., Opt. Mater. 2008, vol. 30, no. 6, pp. 892–899.
13. Day V. W., Klemperer W. G., Maltbie D. J. Organometallics, 1985, vol. 4, no. 1, pp. 104-111. DOI: 10.1021/om00120a018
14. Klemperer W. G., Main D. J. Inorg. Chem., 1990, vol. 29, no. 12, pp. 2355-2360. DOI: 10.1021/ic00337a031
15. Day V. W., Klemperer W. G., Main D. J. Inorg. Chem., 1990, vol. 29, no. 12, pp. 2345-2355. DOI: 10.1021/ic00337a030
16. Lu Ying-Jie, Lalancette R., Beer R. H. Inorg. Chem., 1996, vol. 35, no. 9, pp. 2524-2529. DOI: 10.1021/ic951197c
17. Dabbabi M., Boyer M. J.Inorg.Nucl. Chem., 1976, vol. 38, no. 5, pp. 1011-1014.
18. Bates R. pH Determination. Theory and practice. Khimija, Leningrad Publ., 1968, pp. 94–124 (in Russian).
19. Kholin Y. Quantitative Physico-Chemical Analysis of Complex Formation in Solutions and on the Surface of the Chemically Modified Silica: Models, Mathematical Methods and their Applications. Folio, Kharkov Publ., 2000, p. 288 (in Russian).
20. Pitzer K. S., Mayorga G. J. Phys.Chem., 1973, vol. 77, no. 19, pp. 2300-2308. DOI: 10.1021/j100638a009
21. Bugaevski A. A., Kholin Y. V., Konjaev D. S., Krasovitski A. V. Zh. Obshch. Khim. 1998, vol. 68, pp. 753–757 (in Russian).
22. Meinrath G. Anal. Bioanal. Chem., 2002, vol. 374, no. 5, pp. 796-805. DOI: 10.1007/s00216-002-1547-9
23. Spinner B. Rev. Chim. Miner. 1968, vol. 5, no. 4, pp. 839-868.
24. Rozantsev G. M., Sazonova O. I. Russian Journal of Coordination Chemistry, 2005, vol. 31, no. 8, pp. 552–558. DOI: 10.1007/s11173-005-0135-x
25. Rozantsev, G. M.; Vavilova, S. M.; Belousova, E. E. Russian Journal of Coordination Chemistry, 2007, vol. 52, no. 9, pp. 1478–1485. DOI: 10.1134/S003602360709029X
26. Vavilova S. M., Kryuchkov M. A., Belousova K. E., Rozantsev G. M. Acta Chimica Slovenica, 2010, vol. 57, no. 2, pp. 341-349. Available at:
27. Rocchioli-Deltcheff C., Thouvenot R., Dabbabi M. Spectrochim. Acta., 1977, vol. A33, no. 2, pp. 143-153.
How to Cite
VavilovaS. М., KryuchkovM. А., IgnatуevaV. V., & BelousovaE. Е. (2017). ANALYSIS OF THE STATE OF ISOPOLYNIOBOTUNGSTATE ANIONS (Nb:W = 3:3) AND THEIR SYNTHESIS FROM AQUEOUS SOLUTIONS. Condensed Matter and Interphases, 19(3), 341-351.