PHYSICAL AND CHEMICAL PROPERTIES OF SULPHATE-GLYCINE ZINC ELECTROPLATING SOLUTIONS

  • Elena V. Chentsova Cand. Sci. (Chem.), Associate Professor, Department of Technologies and Equipment of Chemical, Oil-gas and Food Industries, Engels Technological Institute of Yuri Gagarin State Technical University of Saratov; ph.: +7(8453) 953553, e-mail: ev-mail@rambler.ru
  • Svetlana Yu. Pochkina graduate student, Department of Technologies and Equipment of Chemical, Oil-gas and Food Industries, Engels Technological Institute of Yuri Gagarin State Technical University of Saratov; ph.: +7(909) 3396526, e-mail: pochkina_s@mail.ru
  • Nina D. Solov’yova Dr. Sci. (Eng.), Professor, Department of Technologies and Equipment of Chemical, Oil-gas and Food Industries, Engels Technological Institute of Yuri Gagarin State Technical University of Saratov; ph.: +7(8453) 953553, e-mail: tepeti@mail.ru
Keywords: zinc electroplating solution, glycine, electrical conductivity, optical density, an enthalpy of a viscous current, complex formation, coordination number

Abstract

The interaction of components in sulphate-glycine solutions for the electroplating of zinc was studied with the content of ZnSO4 0.05-0.25 mol/l, NH2CH2COOH 0.6-0.95 mol/l and at the temperature range of 22-55 °С. The dependence of electrical conductivity, optical density, kinematic viscosity and the enthalpy of a viscous flow on the solutions composition and the concentration of components was analysed. The physical and chemical properties of sulphate-glycine solutions used for electroplating of zinc are defined by the structural changes in these solutions. The changes occur due to the formation of zinc with glycine complexes. It was determined that with the zinc sulphate concentration range from 0.10 to 0.21 mol/l and the glycine content of 0.7 mol/l, a complex is formed with a coordination number of 1 – ZnGly+. The stability of the complex formed depends on the temperature. The effect of the temperature on the structural transformations in the electrolyte is also indicated by a decrease in the enthalpy of a viscous flow from ~7.3 kJ/mol (temperature range 22-35 °С) to ~ 6.4 kJ/mol (temperature range 40-55 °С). The formation of ZnGly+ type of complexes in the solutions used for electroplating zinc should facilitate the formation of uniform, fine-grained coatings. Considering the formation of glycinate zinc complexes in the concentration range of ZnSO4 from 0.10 to 0.21 mol/l, as well as the value of the electrical conductivity and viscosity of the solutions studied, the following composition of the electrolyte is recommended: ZnSO4 0.21 mol/l, Na2SO4 0.5 mol/l, NH2CH2COOH 0.7 mol/l.

Downloads

Download data is not yet available.

References

1. Okulov V. V. Cinkovanie. Technique and Technology. Moscow, Globus Publ., 2008, 252 p. (in Russian)
2. Shehanov R. F., Gridchin S. N., Balmasov A. V., Rumjanceva K. E. Russian Journal of Chemistry and Chemical Technology [Izv. vuzov. Himija i himicheskaja tehnologija], 2015, vol. 58, no. 1, pp. 104-106. (in Russian)
3. Bobrikova I. G., Goncharenko E. G., Shahlevich E. S. Modern Tends in the Development of Science and Technology, 2016, no. 3-3, pp. 28-31. (in Russian)
4. Shmidt V. V., Zhihareva I. G., Rakashov A. A. Scientific and Technical “Volga Region Bulletin”, 2015, no. 3, pp. 74-78. Available at: https://elibrary.ru/download/elibrary_23930413_17810952.pdf (accessed 21.09.2017). (in Russian)
5. Micin S., Martinez S., Malinovic B., Grozdanic V. Journal of Chemical Technology and Metallurgy, 2016, vol. 51, no. 5, pp. 556-562. Available at: http://dl.uctm.edu/journal/node/j2016-5/9-Micin_556-562.pdf (accessed 21.09.2017).
6. Berezin N. B., Berezina T. N., Mezhevich Zh. V., Sysoev V. A. Bulletin of the Technological University, 2014, vol. 17, no. 22, pp. 355 -359.
7. Petrushova O. Ju., Cupak T. E. Journal Adnvances in Chemistry and Chemical Technology, 2014, vol. XXVIII, no. 5, pp. 95-97. Available at: http://acct.muctr.ru/media/articles/pdf/2014_28_154_095-097.pdf (in Russian)
8. Dolgih O. V., Sockaja N. V., Shamanaeva E. S. Condensed Matter and Interphases, 2007, vol. 9, no. 1, pp. 32-39. Available at: http://www.kcmf.vsu.ru/resources/t_09_1_2007_006.pdf (in Russian)
9. Sapronova L. V., Sockaja N. V., Dolgih O. V. Condensed Matter and Interphases, 2013, vol. 15, no. 4, pp. 446-452. Available at: http://www.kcmf.vsu.ru/resources/t_15_4_2013_013.pdf (in Russian)
10. Berezin N. B., Berezina T. N., Mezhevich Zh. V., Chevela V. V. Bulletin of the Technological University, 2013, vol. 16, no. 5, pp. 267-268.
11. Kozihonov A. U., Dzhulaev U. N., Radzhabov U. R., Shukhratzoda M., Bobiev G. M. Reports of the Academy of Sciences of the Republic of Tajikistan, 2015, vol. 58, no. 7, pp. 608-614. Available at: https://elibrary.ru/download/elibrary_25600373_69170663.pdf (accessed 21.09.2017)
12. Berezin N. B., Gudin N. V., Filippova A. G., Chevela V. V., Mezhevich Zh. V., Jah'jaev Je. D., Sagdeev K. A. Electrodeposition of Metals and Alloys from Aqueous Solutions of Complex Compounds. Kazan, Kazan. State. Technol. University Publ., 2006, 276 p. (in Russian)
13. Mezhevich Zh. V., Berezin N. B. Bulletin of the Technological University, 2016, vol. 19, no. 9, pp. 51-53.
14. Krashhenko T. G., Vvedenshij A. V., Bobrinskaja E. V., Kuleshova N. E. Condensed Matter and Interphases, 2014, vol. 16, no. 1, pp. 42-49. Available at: http://www.kcmf.vsu.ru/resources/t_16_1_2014_007.pdf (in Russian)
15. Hohlov V. Ju, Selemenev V. F., Hohlova O. N, Zagorodnij A. A. Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy, 2003, no. 1, pp. 18-22. Available at: http://www.vestnik.vsu.ru/pdf/chembio/2003/01/hohlov.pdf (in Russian)
16. Bobreshkova O. V., Polumestnaya K. A., Fedosova A. A. Russian Journal of Electrochemistry, 2009, vol. 45, no. 3, pp. 345-349. DOI: 10.1134/S1023193509030161
17. Abrosimov V. K., Korolev V. V., Afanas'ev V. N., at al. Experimental Methods of Solution Chemistry: Densitometry, Viscosimetry, Conductometry and other Methods. Moscow, Science Publ.,1997, 351 p. (in Russian)
18. Solov`eva N. D., Frolova I. I., Legkaya D. A. Condensed Matter and Interphases, 2014, vol. 16, no. 2, pp. 201-205. Available at: http://www.kcmf.vsu.ru/resources/t_16_2_2014_013.pdf (in Russian)
19. Smirnov P. R., Trostin V. N. Structural Parameters of the Near Environment of Ions in Aqueous Solutions of Inorganic Electrolytes. Ivanovo, Ivanovo Publishing House, 2011, 400 p. (in Russian)
20. Kessler Ju. M., Petrenko V. E., Ljashhenko A. K., at al. / Ed. by Kutepov A. M. Water: Structure, Condition, Solvation. Achievements of Recent Years. Moscow, Science Publ., 2003, 404 p. (in Russian)
21. Bonaccorsi R., Palla P., Tomasi J. Journal of the American Chemical Society, 1984, vol. 106, no. 7, pp. 1945-1950. DOI: 10.1021/ja00319a008 Available at: http://pubs.acs.org/doi/abs/10.1021/ja00319a008 (accessed 21.09.2017)
22. Gorbitz C. H. Journal of the Chemical Society, Perkin Trans. 2, 1996, no. 10, pp. 2213-2219. DOI: 10.1039/P29960002213 Available at: http://pubs.rsc.org/-/content/articlepdf/1996/p2/p29960002213 (accessed 20.09.2017)
23. Kusalik P. G., Bergman D., Laaksonen A. Journal of Chemical Physics, 2000, vol. 113, no. 18, pp. 8036-8046. DOI: 10.1063/1.1315321 Available at: http://aip.scitation.org/doi/10.1063/1.1315321 (accessed 10.09.2017)
24. Kruchinin S. E. Thesis of Diss. ... Cand. Chem. Sci. Ivanovo, 2013, 155 pp. (in Russian)
25. Max J.-J., Chapados C. Journal of Physical Chemistry A, 2004, vol. 108, no. 16, pp. 3324-3337. DOI: 10.1021/jp036401t Available at: http://pubs.acs.org/doi/abs/10.1021/jp036401t (accessed 10.09.2017).
26. Afanas'ev V. N., Tjunina E. Ju., Rjabova V. V. Journal of Structural Chemistry, 2004, vol. 45, no. 5, pp. 838-843. Available at: https://link.springer.com/content/pdf/10.1007%2Fs10947-005-0066-x.pdf
27. White A., Jiang S. Journal of Physical Chemistry B, 2011, vol. 115, no. 4, pp. 660-667. DOI: 10.1021/jp1067654 Available at: http://pubs.acs.org/doi/abs/10.1021/jp1067654 (accessed 21.09.2017)
28. Korolev V. P. Journal of Structural Chemistry, 2013, vol. 54, no. 3, pp. 534-540. DOI: 10.1134/S0022476613030098
29. Erdey-Gruz T. Transport Phenomena in Aqueous Solutions. Budapest, Akademiai Kiado Publ., 1974.
30. Kravtsov V. I. Equilibrium and Kinetics of Electrode Reactions of Metal Complexes. Moscow: Chemistry Publ., 1985, 208 p. (in Russian)
Published
2017-12-28
How to Cite
Chentsova, E. V., Pochkina, S. Y., & Solov’yova, N. D. (2017). PHYSICAL AND CHEMICAL PROPERTIES OF SULPHATE-GLYCINE ZINC ELECTROPLATING SOLUTIONS. Condensed Matter and Interphases, 19(4), 596-604. https://doi.org/10.17308/kcmf.2017.19/242
Section
Статьи