Исследование теплопроводности PbS, CuFeS2, ZnS

Keywords: mineral, galena, chalcopyrite, ceramics, zinc sulphide, thermal conductivity, temperature dependence.

Abstract

It is necessary to know the values of the thermal conductivity coeffi cient of a semiconductor material to assess the possibility of its application as a thermoelectric. The thermal conductivity of natural minerals of galena (PbS), chalcopyrite (CuFeS2), and ZnS ceramics was studied using the absolute stationary method of longitudinal heat fl ux in the range of 50–300 K. The samples were homogeneous, had low impurity content (the chemical composition of the samples was controlled by the X-ray fl uorescence method) and were characterized by high electrical resistivity (r > 9·10–2 Ohm·m at room temperature). It corresponds to the electronic component of the thermal conductivity ke < 1·10–4 W/(m·K). The results of the thermal
conductivity measurements are presented graphically and in tabular form. All the dependences are shown to be decreasing. The thermal conductivity values (W/(m·K)) at 50 K amount to 10.9 for PbS, 62 for CuFeS2, and 73-98 for ZnS. At 300 K the values are 2.48, 10.5 and 18.6 – 18.8 W/(m·K), respectively.
All the studied materials have much worse thermal conductivity than pyrite (FeS2). The obtained data was compared to the data available in literary sources. The temperature dependence of the thermal  сonductivity of galena is low, its low thermal conductivity is favourable for thermoelectric applications.
The thermal conductivity of chalcopyrite, which was detected in this study, appeared to be the highest among the corresponding literature data. The high thermal conductivity of zinc sulphide correlates to its wide variability depending on the structural features of the material. The temperature dependences of the mean free path of phonons were calculated. The values of this characteristic, estimated for the melting temperature, for PbS and for ZnS, in particular, signifi cantly exceed the size of an elementary crystal cell, which is unusual.

 

 

 

 

REFERENCES

  1. Samofalova T. V., Semenov V. N., Nituta A. N., Zvyagina O. V., Proskina E. Yu. Synthesis and properties of the CdS–ZnS films doped by copper ions. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2018;20(3): 452–459. DOI: https://doi.org/10.17308/kcmf.2018.20/582 (In Russ., abstract in Eng.)
  2. Ioffe A. F., Ioffe A. V. Teploprovodnost’ tverdykh rastvorov poluprovodnikov [Thermal conductivity of solid solutions of semiconductors]. Physics of the Solid State. 1960;2(5): 781–792. Available at: http://books. e-heritage.ru/book/10085074 (In Russ.)
  3. Popov P. A., Kuznetsov S. V., Fedorov P. P. Thermal conductivity of FeS2 pyrite crystals in the temperature range 50–300 K. Crystallography Reports. 2013;58(2): 319–321. DOI: https://doi.org/10.1134/S1063774513020223
  4. Wei L., Chen J.-F., He Q.-Y., Teng W. Study of lattice thermal conductivity of PbS. Journal of Alloys and Compounds. 2014;584: 381–384. DOI: https://doi.org/10.1016/j.jallcom.2013.09.081
  5. Pei Y.-l., Liu Y. Electrical and thermal transport properties of Pb-based chalcogenides: PbTe, PbSe, and PbS. Journal of Alloys and Compounds. 2012;514: 40–44. DOI: https://doi.org/10.1016/j.jallcom.2011.10.036
  6. Zhao L. D., Lo Sh., He J., Li H., Biswas K, Androulakis J., Wu C.-I., Hogan T. P., Chung D.-Y., Dravid V. P., Kanatzidis M. G. High performance thermoelectrics from earth-abundant materials: enhanced figure of merit in PbS by second phase nanostructures. J. Am. Chem. Soc. 2011;133: 20476–20487. DOI: https://doi.org/10.1021/ja208658w
  7. Zhang H., Wang H., Zhu H., Li H., Su T., Li Sh., Hu M., Fan H. Hydrothermal synthesis and thermoelectric properties of PbS. Materials Science-Poland. 2016;34(4): 754–759 DOI: https://doi.org/10.1515/msp-2016-0098 
  8. El-Sharkawy A. A., Abou El-Azm A. M., Kenawy M. I. , Hillal A. S., Abu-Basha H. M. Thermophysical properties of polycrystalline PbS, PbSe, and PbTe in the temperature range 300–700 K. Int. J. Thermophys. 1983;4(3): 261–269. DOI: https://doi.org/10.1007/BF00502357
  9. Greig D. Thermoelectricity and thermal conductivity in the lead sulfi de group of semiconductors. Phys. Rev. 1960;120(2): 358–365. DOI: https://doi.org/10.1103/PhysRev.120.358
  10. Popov V. V., Kizhaev S. A., Rud’ Y. V. Magnetic and thermal properties of CuFeS2 at low temperatures. Physics of the Solid State. 2011;53(1): 71–75. DOI: https://doi.org/10.1134/S1063783411010240
  11. Tsujii N., Mori T. High thermoelectric power factor in a carrier-doped magnetic semiconductor CuFeS2. Appl. Phys. Express. 2013;6(4): 043001-4. DOI: https://doi.org/10.7567/APEX.6.043001
  12. Tsujii N. Possible enhancement of thermoelectric properties by use of a magnetic semiconductor: carrier-doped chalcopyrite Cu1-xFe1+xS2. J. Electron. Mater. 2013;42(7): 1974–1977. DOI: https://doi.org/10.1007/s11664-013-2485-3
  13. Li Y., Zhang T., Qin Y., Day T., Snyder G. J., Shi X., Chen L. Thermoelectric transport properties of diamond-like Cu1−xFe1+xS2 tetrahedral compounds. Journal of Applied Physics. 2014;116: 203705-8. DOI: https://doi.org/10.1063/1.4902849
  14. Xie H., Su X., Yan Y., Liu W., Chen L., Fu J., Yang J., Uher C., Tang X. Thermoelectric performance of CuFeS2+2x composites prepared by rapid thermal explosion. NPG Asia Mater. 2017;9: e390(12). DOI: https://doi.org/ 10.1038/am.2017.80
  15. Slack G. A. Thermal conductivity of II–VI compounds and phonon scattering by Fe2+ Impurities. Physical Review. 1972;6(10): 3791–3800. DOI: https://doi.org/10.1103/PhysRevB.6.3791
  16. Eucken A., Kuhn G. New Measurement of heat of conductivity of solid crystalline substances at 0° and – 190 °C. Z. Physik. Chem., A. 1928;134(1): 193–219. DOI: https://doi.org/ 10.1515/zpch-1928-13416
  17. Krüger R. Wärmeleitfähigkeit und spezifi sche Wärmekapazität von ZnS und CdS im Temperaturbereich von 20 K bis 300 K. Thesis. Tecnische Universitat Berlin; 1969. 93 p. (in German).
  18. Lugueva N. V., Luguev S. M. The infl uence of structural features on the thermal conductivity of polycrystalline zinc sulfi de. Physics of the Solid State. 2002; 4(2): 260–265. DOI: https://doi.org/10.1134/1.1451010
  19. Lugueva N. V., Luguev S. M. The effect of structural defects on the thermal conductivity of ZnS, ZnSe, and CdTe polycrystals. High Temperature. 2004;42: 54–59.DOI:
    https://doi.org/10.1023/B:HITE.0000020091.31679.b0
  20. Popov P. A., Sidorov А. А., Kul’chenkov Е. А., Аnishchenko А. М., Аvetisov I. Sh., Sorokin N. I., Fedorov P. P. Thermal conductivity and expansion of PbF2 single crystal. Ionics. 2017;23(1): 233–239. DOI: https://doi.org/10.1007/s11581-016-1802-2
  21. Berman R. Thermal Conduction in Solids. Oxford: Clarendon; 1976. 193 p.
  22. Parkinson D. H., Quarrington J. E. The molar heats of lead sulphide, selenide and telluride in the temperature range 20°K to 260°K. Proceedings of the Physical Society. Section A. 1954;67(7): 569–579. DOI: https://doi.org/10.1088/0370-1298/67/7/301
  23. Blachnik R., Igel R. Thermodynamische eigenschaften von IV–VI-verbindungen: bleichalkogenide/Thermodynamic properties of IV–VI-compounds: Leadchalcogenides. Z. Naturforsch. 1974;29B: 625–629. DOI: https://doi.org/10.1515/znb-1974-9-1012
  24. Popov P. A., Matovnikov A. V., Moiseev N. V., Buchinskaya I. I., Karimov D. N., Sorokin N. I., Sul’yanova E. A., Sobolev B. P., Krutov M. A. Thermophysical characteristics of Pb0.679Cd0.321F2 solidsolution crystals. Crystallography Reports. 2015;60(1): 111–115. DOI: https://doi.org/10.1134/S1063774515010174
  25. Popov P. A. Teploprovodnost’ tverdotel’nykh opticheskikh materialov na osnove neorganicheskikh oksidov i ftoridov [Thermal conductivity of solid-state optical materials based on inorganic oxides and fluorides]. Diss. DSc in physics and mathematics. Moscow: Bauman MSTU Publ.; 2015. 532 p. Available at: https://elibrary.ru/download/elibrary_25834920_35812051.pdf (In Russ.)
  26. Robie R. A., Wiggins L. B., Barton P. B., Hemingway B.S. Low-temperature heat capacity and entropy of chalcopyrite (CuFeS2): estimates of the standard molar enthalpy and Gibbs free energy of formation of chalcopyrite and bornite (Cu5FeS4). J. Chem., Thermodynamics. 1985;17(5): 481–488. DOI: https://doi.org/10.1016/0021-9614(85)90147-8
  27. Pankratz L. B., King E. G. High-temperature enthalpies and entropies of chalcopyrite and bornite. U.S. Bur. Mines: Rep Investig 7435: 1–10.
  28. Berthebaud D., Lebedev O. I., Maignan A. Thermoelectric properties of n-type cobalt doped chalcopyrite Cu1−xCoxFeS2 and p-type eskebornite CuFeSe2. J. Materiomics. 2015;1(1): 68–74. DOI: https://doi.org/10.1016/j.jmat.2015.03.007
  29. Sato K., Harada Y., Taguchi M., Shin S., Fujimori A. Characterization of Fe 3d states in CuFeS2 by resonant X-ray emission spectroscopy. Phys. Stat. Solid. A. 2009;206: 1096–1100. DOI: https://doi.org/10.1002/pssa.200881196
  30. Popov P. A., Dukel’skiy K. V., Mironov I. A., Smirnov A. N., Smolyanskiy P. L., Fedorov P. P., Osiko V. V., Basiev T. T. Thermal conductivity of CaF2 optical ceramic. Doklady Physics. 2007;52(1): 7–9. DOI: https://doi.org/10.1134/S1028335807010028
  31. Tablitsy fi zicheskikh velichin [Tables of physical quantities]. Handbook / ed. I. K. Kikonin. Moscow, Atomizdat; 1976 1008 p. (In Russ.)
  32. Khenata R., Bouhemadou A., Sahnoun M., Reshak A. H., Baltache H., M. Rabah M. Elastic, electronic and optical properties of ZnS, ZnSe and ZnTe under pressure. Computational Materials Science. 2006;38(1): 29–38. DOI: https://doi.org/10.1016/j.commatsci.2006.01.013

Downloads

Download data is not yet available.

Author Biographies

Pavel A. Popov, Bryansk State Academician I. G. Petrovski University, 14 Bezhitskaya str., Bryansk 241036, Russian Federation

DSc in Physics and Mathematics, Professor, Bryansk State Academician I.G. Petrovski
University, Bryansk, Russian Federation, e-mail: tfbgubry@mail.ru.

Sergey V. Kuznetsov, Bryansk State Academician I. G. Petrovski University, 14 Bezhitskaya str., Bryansk 241036, Russian Federation

PhD in Chemistry, Head of Chemistry Department, Bryansk State Academician I. G. Petrovski University, Bryansk, Russian Federation, e-mail: passivoxid@mail.ru.

Alexander A. Krugovykh, Bryansk State Academician I. G. Petrovski University, 14 Bezhitskaya str., Bryansk 241036, Russian Federation

postgraduate student, Bryansk State Academician I. G. Petrovski University,
Bryansk, Russian Federation, e-mail: aleksander,kru@yandex.ru.

Nikolay V. Mitroshenkov, Bryansk State Academician I. G. Petrovski University, 14 Bezhitskaya str., Bryansk 241036, Russian Federation

PhD in Physics and Mathematics, senior lecturer, Bryansk State Academician I. G. Petrovski University, Bryansk, Russian Federation, e-mail:weerm@yandex.ru.

Stanislav S. Balabanov, Devyatykh Institute of Chemistry of High Purity Substances of the Russian Academy of Sciences, 49 ul. Tropinina, Nizhniy Novgorod 603137, Russian Federation

PhD in Chemistry, leading research fellow, Devyatykh Institute of Chemistry of High Purity Substances of the Russian Academy of Sciences, Nizhniy Novgorod, Russian Federation, e-mail: balabanov@ihps,nnov.ru.

Pavel P. Fedorov, Prokhorov General Physics Institute of the Russian Academy of Science of the Russian Academy of Sciences, 38 Vavilov str., Moscow 119991, Russian Federation

DSc in Chemistry, Professor, Chief Researcher at the Prokhorov General Physics Institute of the Russian Academy of Science, Moscow, Russian Federation; e-mail: ppfedorov@yandex.ru.

Published
2020-03-20
How to Cite
Popov, P. A., Kuznetsov, S. V., Krugovykh, A. A., Mitroshenkov, N. V., Balabanov, S. S., & Fedorov, P. P. (2020). Исследование теплопроводности PbS, CuFeS2, ZnS. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 22(1). https://doi.org/10.17308/kcmf.2020.22/2533
Section
Статьи