Study of the thermal conductivity of PbS, CuFeS2, ZnS
Abstract
It is necessary to know the values of the thermal conductivity coeffi cient of a semiconductor material to assess the possibility of its application as a thermoelectric. The thermal conductivity of natural minerals of galena (PbS), chalcopyrite (CuFeS2), and ZnS ceramics was studied using the absolute stationary method of longitudinal heat fl ux in the range of 50–300 K. The samples were homogeneous, had low impurity content (the chemical composition of the samples was controlled by the X-ray fl uorescence method) and were characterized by high electrical resistivity (r > 9·10–2 Ohm·m at room temperature). It corresponds to the electronic component of the thermal conductivity ke < 1·10–4 W/(m·K). The results of the thermal
conductivity measurements are presented graphically and in tabular form. All the dependences are shown to be decreasing. The thermal conductivity values (W/(m·K)) at 50 K amount to 10.9 for PbS, 62 for CuFeS2, and 73-98 for ZnS. At 300 K the values are 2.48, 10.5 and 18.6 – 18.8 W/(m·K), respectively.
All the studied materials have much worse thermal conductivity than pyrite (FeS2). The obtained data was compared to the data available in literary sources. The temperature dependence of the thermal сonductivity of galena is low, its low thermal conductivity is favourable for thermoelectric applications.
The thermal conductivity of chalcopyrite, which was detected in this study, appeared to be the highest among the corresponding literature data. The high thermal conductivity of zinc sulphide correlates to its wide variability depending on the structural features of the material. The temperature dependences of the mean free path of phonons were calculated. The values of this characteristic, estimated for the melting temperature, for PbS and for ZnS, in particular, signifi cantly exceed the size of an elementary crystal cell, which is unusual.
REFERENCES
- Samofalova T. V., Semenov V. N., Nituta A. N., Zvyagina O. V., Proskina E. Yu. Synthesis and properties of the CdS–ZnS films doped by copper ions. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2018;20(3): 452–459. DOI: https://doi.org/10.17308/kcmf.2018.20/582 (In Russ., abstract in Eng.)
- Ioffe A. F., Ioffe A. V. Teploprovodnost’ tverdykh rastvorov poluprovodnikov [Thermal conductivity of solid solutions of semiconductors]. Physics of the Solid State. 1960;2(5): 781–792. Available at: http://books. e-heritage.ru/book/10085074 (In Russ.)
- Popov P. A., Kuznetsov S. V., Fedorov P. P. Thermal conductivity of FeS2 pyrite crystals in the temperature range 50–300 K. Crystallography Reports. 2013;58(2): 319–321. DOI: https://doi.org/10.1134/S1063774513020223
- Wei L., Chen J.-F., He Q.-Y., Teng W. Study of lattice thermal conductivity of PbS. Journal of Alloys and Compounds. 2014;584: 381–384. DOI: https://doi.org/10.1016/j.jallcom.2013.09.081
- Pei Y.-l., Liu Y. Electrical and thermal transport properties of Pb-based chalcogenides: PbTe, PbSe, and PbS. Journal of Alloys and Compounds. 2012;514: 40–44. DOI: https://doi.org/10.1016/j.jallcom.2011.10.036
- Zhao L. D., Lo Sh., He J., Li H., Biswas K, Androulakis J., Wu C.-I., Hogan T. P., Chung D.-Y., Dravid V. P., Kanatzidis M. G. High performance thermoelectrics from earth-abundant materials: enhanced figure of merit in PbS by second phase nanostructures. J. Am. Chem. Soc. 2011;133: 20476–20487. DOI: https://doi.org/10.1021/ja208658w
- Zhang H., Wang H., Zhu H., Li H., Su T., Li Sh., Hu M., Fan H. Hydrothermal synthesis and thermoelectric properties of PbS. Materials Science-Poland. 2016;34(4): 754–759 DOI: https://doi.org/10.1515/msp-2016-0098
- El-Sharkawy A. A., Abou El-Azm A. M., Kenawy M. I. , Hillal A. S., Abu-Basha H. M. Thermophysical properties of polycrystalline PbS, PbSe, and PbTe in the temperature range 300–700 K. Int. J. Thermophys. 1983;4(3): 261–269. DOI: https://doi.org/10.1007/BF00502357
- Greig D. Thermoelectricity and thermal conductivity in the lead sulfi de group of semiconductors. Phys. Rev. 1960;120(2): 358–365. DOI: https://doi.org/10.1103/PhysRev.120.358
- Popov V. V., Kizhaev S. A., Rud’ Y. V. Magnetic and thermal properties of CuFeS2 at low temperatures. Physics of the Solid State. 2011;53(1): 71–75. DOI: https://doi.org/10.1134/S1063783411010240
- Tsujii N., Mori T. High thermoelectric power factor in a carrier-doped magnetic semiconductor CuFeS2. Appl. Phys. Express. 2013;6(4): 043001-4. DOI: https://doi.org/10.7567/APEX.6.043001
- Tsujii N. Possible enhancement of thermoelectric properties by use of a magnetic semiconductor: carrier-doped chalcopyrite Cu1-xFe1+xS2. J. Electron. Mater. 2013;42(7): 1974–1977. DOI: https://doi.org/10.1007/s11664-013-2485-3
- Li Y., Zhang T., Qin Y., Day T., Snyder G. J., Shi X., Chen L. Thermoelectric transport properties of diamond-like Cu1−xFe1+xS2 tetrahedral compounds. Journal of Applied Physics. 2014;116: 203705-8. DOI: https://doi.org/10.1063/1.4902849
- Xie H., Su X., Yan Y., Liu W., Chen L., Fu J., Yang J., Uher C., Tang X. Thermoelectric performance of CuFeS2+2x composites prepared by rapid thermal explosion. NPG Asia Mater. 2017;9: e390(12). DOI: https://doi.org/ 10.1038/am.2017.80
- Slack G. A. Thermal conductivity of II–VI compounds and phonon scattering by Fe2+ Impurities. Physical Review. 1972;6(10): 3791–3800. DOI: https://doi.org/10.1103/PhysRevB.6.3791
- Eucken A., Kuhn G. New Measurement of heat of conductivity of solid crystalline substances at 0° and – 190 °C. Z. Physik. Chem., A. 1928;134(1): 193–219. DOI: https://doi.org/ 10.1515/zpch-1928-13416
- Krüger R. Wärmeleitfähigkeit und spezifi sche Wärmekapazität von ZnS und CdS im Temperaturbereich von 20 K bis 300 K. Thesis. Tecnische Universitat Berlin; 1969. 93 p. (in German).
- Lugueva N. V., Luguev S. M. The infl uence of structural features on the thermal conductivity of polycrystalline zinc sulfi de. Physics of the Solid State. 2002; 4(2): 260–265. DOI: https://doi.org/10.1134/1.1451010
- Lugueva N. V., Luguev S. M. The effect of structural defects on the thermal conductivity of ZnS, ZnSe, and CdTe polycrystals. High Temperature. 2004;42: 54–59.DOI:
https://doi.org/10.1023/B:HITE.0000020091.31679.b0 - Popov P. A., Sidorov А. А., Kul’chenkov Е. А., Аnishchenko А. М., Аvetisov I. Sh., Sorokin N. I., Fedorov P. P. Thermal conductivity and expansion of PbF2 single crystal. Ionics. 2017;23(1): 233–239. DOI: https://doi.org/10.1007/s11581-016-1802-2
- Berman R. Thermal Conduction in Solids. Oxford: Clarendon; 1976. 193 p.
- Parkinson D. H., Quarrington J. E. The molar heats of lead sulphide, selenide and telluride in the temperature range 20°K to 260°K. Proceedings of the Physical Society. Section A. 1954;67(7): 569–579. DOI: https://doi.org/10.1088/0370-1298/67/7/301
- Blachnik R., Igel R. Thermodynamische eigenschaften von IV–VI-verbindungen: bleichalkogenide/Thermodynamic properties of IV–VI-compounds: Leadchalcogenides. Z. Naturforsch. 1974;29B: 625–629. DOI: https://doi.org/10.1515/znb-1974-9-1012
- Popov P. A., Matovnikov A. V., Moiseev N. V., Buchinskaya I. I., Karimov D. N., Sorokin N. I., Sul’yanova E. A., Sobolev B. P., Krutov M. A. Thermophysical characteristics of Pb0.679Cd0.321F2 solidsolution crystals. Crystallography Reports. 2015;60(1): 111–115. DOI: https://doi.org/10.1134/S1063774515010174
- Popov P. A. Teploprovodnost’ tverdotel’nykh opticheskikh materialov na osnove neorganicheskikh oksidov i ftoridov [Thermal conductivity of solid-state optical materials based on inorganic oxides and fluorides]. Diss. DSc in physics and mathematics. Moscow: Bauman MSTU Publ.; 2015. 532 p. Available at: https://elibrary.ru/download/elibrary_25834920_35812051.pdf (In Russ.)
- Robie R. A., Wiggins L. B., Barton P. B., Hemingway B.S. Low-temperature heat capacity and entropy of chalcopyrite (CuFeS2): estimates of the standard molar enthalpy and Gibbs free energy of formation of chalcopyrite and bornite (Cu5FeS4). J. Chem., Thermodynamics. 1985;17(5): 481–488. DOI: https://doi.org/10.1016/0021-9614(85)90147-8
- Pankratz L. B., King E. G. High-temperature enthalpies and entropies of chalcopyrite and bornite. U.S. Bur. Mines: Rep Investig 7435: 1–10.
- Berthebaud D., Lebedev O. I., Maignan A. Thermoelectric properties of n-type cobalt doped chalcopyrite Cu1−xCoxFeS2 and p-type eskebornite CuFeSe2. J. Materiomics. 2015;1(1): 68–74. DOI: https://doi.org/10.1016/j.jmat.2015.03.007
- Sato K., Harada Y., Taguchi M., Shin S., Fujimori A. Characterization of Fe 3d states in CuFeS2 by resonant X-ray emission spectroscopy. Phys. Stat. Solid. A. 2009;206: 1096–1100. DOI: https://doi.org/10.1002/pssa.200881196
- Popov P. A., Dukel’skiy K. V., Mironov I. A., Smirnov A. N., Smolyanskiy P. L., Fedorov P. P., Osiko V. V., Basiev T. T. Thermal conductivity of CaF2 optical ceramic. Doklady Physics. 2007;52(1): 7–9. DOI: https://doi.org/10.1134/S1028335807010028
- Tablitsy fi zicheskikh velichin [Tables of physical quantities]. Handbook / ed. I. K. Kikonin. Moscow, Atomizdat; 1976 1008 p. (In Russ.)
- Khenata R., Bouhemadou A., Sahnoun M., Reshak A. H., Baltache H., M. Rabah M. Elastic, electronic and optical properties of ZnS, ZnSe and ZnTe under pressure. Computational Materials Science. 2006;38(1): 29–38. DOI: https://doi.org/10.1016/j.commatsci.2006.01.013
Downloads
Copyright (c) 2020 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.